cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A095955 Function f(x) = phi(sigma(x)) is iterated with initial value n; a(n) is the length of the cycle into which the trajectory merges.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 3, 1, 1, 3, 1, 1, 3, 3, 1, 3, 3, 1, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 1, 2, 1, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 13 2004

Keywords

Comments

Diagnosis of true cycle of length m: a(j-m) = a(j), but a(j-d) = a(j) cases are excluded for d dividing m.
Length 5 is rare. Example: a(6634509269055173050761216000)=5 and the 5-cycle is {6634509269055173050761216000, 7521613519844726223667200000, 7946886558074859593662464000, 7794495412499746337587200000, 7970172471593905204651622400, 6634509269055173050761216000}. The initial values 2^79 = 604462909807314587353088 and 2^83 = 9671406556917033397649408 after more than 250 transient terms reach this cycle.
a(i) is in {1,2,3,4,6,9,11,12,15,18} for 1 <= i < 254731536. The number 254731536 is the smallest of many integers that are not known to reach a cycle (see the file for a list). - Jud McCranie, Jun 05 2024

Examples

			Occurrences of cycle lengths if n <= 1000: {C1=110, C2=781, C3=36, C4=67, C5=0, C6=6, C7=0, ...}.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Jul 14 2004 *)
  • PARI
    f(x)=eulerphi(sigma(x))
    a(n)=my(t=f(n),h=f(t),s); while(t!=h, t=f(t); h=f(f(h))); t=f(t); h=f(t); s=1; while(t!=h, s++; t=f(t); h=f(f(h))); s \\ Charles R Greathouse IV, Nov 22 2013

A095956 a(n) is the smallest initial value if function f(x)=phi(sigma(x)) is iterated and the iteration ends in a cycle of length n.

Original entry on oeis.org

1, 4, 16, 324
Offset: 1

Views

Author

Labos Elemer, Jul 13 2004

Keywords

Comments

a(6) = 784. a(11) = 76050. a(15) = 467856. a(18) = 401408.
a(n) is the least k such that A095955(k) = n. a(9) = 22011456. a(12) = 14531344. No more terms < 10^8. - David Wasserman, May 14 2007
a(5) <= 6634509269055173050761216000, see A095955. - Charles R Greathouse IV, Nov 22 2013
a(5) <= 278832689509653754675200. a(21) <= 723197776. All numbers < 254731536 reach a cycle of length 1, 2, 3, 4, 6, 9, 11, 12, 15 or 18. 254731536 does not reach a cycle after 20000 iterations. - Donovan Johnson, Dec 06 2013
a(5) <= 9215376914800. a(7) <= 50566357997109706752. a(8) <= 41009810800. a(10) <= 8052138062400. a(16) <= 5281622477557929264. a(19) <= 12153003733213997291274240000. a(22) <= 46355253084. a(23) <= 164171309187293459251200. a(29) <= 15235849366671151595520000. a(31) <= 12904041477133188557545144320. a(34) <= 2611389824976. a(53) <= 760237821375852770392965120. a(56) <= 11067064315112568913920. a(80) <= 271411311216414271400943943680. a(93) <= 167350414807467078768. a(167) <= 19716297663934955520. a(351) <= 307625014110191616000000. a(595) <= 828718488676293128378677798502400. - Hiroaki Yamanouchi, Sep 10 2014
If none of the terms < 723197776 in the file of unknown terms in A095955 lead to a cycle of length 21, then a(21) = 723197776. - Jud McCranie, Jun 14 2024
a(8) = 41009810800, a(22) = 40941163200. - Jud McCranie, Jun 18 2024

Examples

			a(4) = 324. 324 -> 660 -> 576 -> 1512 -> 1280 -> 864 -> 576 (cycle length = 4). - _Donovan Johnson_, Dec 06 2013
		

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; t = Table[0, {50}]; Do[ d = f[n]; If[d < 51 && t[[d]] == 0, t[[d]] = n], {n, 1, 10^6}]; t (* Robert G. Wilson v, Jul 14 2004 *)

A095952 Initial values for f(x)=phi(sigma(x)) such that iteration of f ends in cycle of length=1.

Original entry on oeis.org

1, 2, 3, 5, 8, 9, 12, 14, 15, 19, 20, 22, 23, 26, 29, 41, 43, 128, 156, 168, 186, 189, 200, 201, 217, 231, 237, 240, 248, 254, 260, 266, 271, 285, 291, 297, 303, 304, 313, 314, 329, 332, 335, 337, 341, 346, 350, 366, 368, 383, 387, 395, 413, 427, 430, 436, 437
Offset: 1

Views

Author

Labos Elemer, Jul 13 2004

Keywords

Examples

			n=100: trajectory={980, 648, 880, 720, 720}
		

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Select[ Range[1540], f[ # ] == 1 &] (* Robert G. Wilson v, Jul 14 2004 *)
  • PARI
    is(n)=my(t=f(n),h=f(t));while(t!=h,t=f(t);h=f(f(h)));t==f(t) \\ Charles R Greathouse IV, Nov 22 2013

A095953 Initial values for f(x) = phi(sigma(x)) such that iteration of f ends in a cycle of length 3.

Original entry on oeis.org

16, 18, 21, 24, 25, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 44, 45, 46, 47, 51, 53, 55, 58, 59, 61, 65, 71, 83, 86, 89, 109, 131, 137, 149, 900, 1116, 1152, 1156, 1200, 1236, 1260, 1300, 1320, 1380, 1386, 1410, 1428, 1458, 1488, 1500, 1518, 1524, 1533, 1536
Offset: 1

Views

Author

Labos Elemer, Jul 13 2004

Keywords

Examples

			n=900: trajectory={900, 2160, 1920, [1536, 1200, 1860], 1536, ...}.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Select[ Range[1540], f[ # ] == 3 &] (* Robert G. Wilson v, Jul 14 2004 *)
    fcl3Q[n_]:=Length[FindTransientRepeat[NestList[EulerPhi[DivisorSigma[1,#]]&,n,100],3][[2]]]==3; Select[Range[1600],fcl3Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 21 2016 *)
  • PARI
    f(x)=eulerphi(sigma(x))
    is(n)=my(t=f(n), h=f(t)); while(t!=h, t=f(t); h=f(f(h))); h=f(h); t!=h && t==f(f(h)) \\ Charles R Greathouse IV, Nov 22 2013

Extensions

More terms from Robert G. Wilson v, Jul 14 2004

A096887 Initial values for f(x)=phi(sigma(x)) such that iteration of f ends in cycle of length=2.

Original entry on oeis.org

4, 6, 7, 10, 11, 13, 17, 32, 36, 42, 48, 49, 50, 52, 54, 56, 57, 60, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114
Offset: 1

Views

Author

Labos Elemer and Robert G. Wilson v, Jul 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Select[ Range[115], f[ # ] == 2 &]
  • PARI
    f(x)=eulerphi(sigma(x))
    is(n)=my(t=f(n), h=f(t)); while(t!=h, t=f(t); h=f(f(h))); h=f(h); t!=h && t==f(h) \\ Charles R Greathouse IV, Nov 22 2013

A096890 Initial values for f(x)=phi(sigma(x)) such that iteration of f ends in a cycle of length 18.

Original entry on oeis.org

401408, 414050, 436032, 455625, 462400, 466608, 476100, 486300, 486900, 512337, 522242, 526974, 543600, 544644, 544944, 546192, 546861, 554304, 559504, 571536, 572313, 575028, 577200, 579856, 583200, 585528, 599694, 604300, 609429, 611618
Offset: 1

Views

Author

Labos Elemer and Robert G. Wilson v, Jul 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Select[ Range[624900], f[ # ] == 18 &]
  • PARI
    f(x)=eulerphi(sigma(x))
    is(n)=my(t=f(n), h=f(t)); while(t!=h, t=f(t); h=f(f(h))); for(i=1,17,h=f(h); if(t==h,return(0))); t==f(h) \\ Charles R Greathouse IV, Nov 25 2013

A096888 Initial values for f(x)=phi(sigma(x)) such that iteration of f ends in cycle of length=11.

Original entry on oeis.org

76050, 88452, 88896, 95922, 104364, 104988, 106032, 108252, 110450, 110928, 112896, 113052, 113412, 113868, 115572, 119892, 119916, 121680, 122220, 122832, 122916, 123060, 123312, 129600, 129840, 129984, 130260, 130560, 131280, 133860
Offset: 1

Views

Author

Labos Elemer and Robert G. Wilson v, Jul 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Select[ Range[134000], f[ # ] == 11 &]
  • PARI
    f(x,k=1)=for(i=1,k,x=eulerphi(sigma(x))); x
    is(n)=my(t=f(n), h=f(t)); while(t!=h, t=f(t); h=f(f(h))); h=f(h); t!=h && t==f(h,10) \\ Charles R Greathouse IV, Nov 25 2013

A096889 Initial values for f(x)=phi(sigma(x)) such that iteration of f ends in cycle of length=15.

Original entry on oeis.org

467856, 480200, 490000, 499968, 514416, 523344, 524352, 531441, 548400, 549444, 550512, 553728, 556752, 560532, 562500, 562800, 570000, 570276, 570576, 573744, 576240, 579024, 579900, 581700, 584112, 584836, 586756, 590268, 595008, 599076
Offset: 1

Views

Author

Labos Elemer and Robert G. Wilson v, Jul 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Select[ Range[599800], f[ # ] == 15 &]
  • PARI
    f(x,k=1)=for(i=1,k,x=eulerphi(sigma(x))); x
    is(n)=my(t=f(n), h=f(t)); while(t!=h, t=f(t); h=f(f(h))); h=f(h); t!=h && t!=(h=f(h,2)) && t!=(h=f(h,2)) && t==f(h,10) \\ Charles R Greathouse IV, Nov 25 2013

A096526 Initial values for f(x)=phi(sigma(x)) such that iteration of f ends in a cycle of length 4.

Original entry on oeis.org

324, 400, 484, 490, 530, 544, 576, 630, 660, 672, 684, 690, 714, 722, 750, 756, 768, 770, 772, 777, 780, 792, 804, 810, 819, 828, 832, 833, 840, 841, 846, 852, 858, 864, 868, 870, 872, 876, 888, 892, 901, 906, 910, 918, 920, 924, 930, 936, 940, 948, 952
Offset: 1

Views

Author

Labos Elemer, Jul 13 2004

Keywords

Examples

			n=324: trajectory=324, 660, [576, 1512, 1280, 864], 576, ...}
		

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Select[ Range[1000], f[ # ] == 4 &] (* Robert G. Wilson v, Jul 14 2004 *)
  • PARI
    f(x)=eulerphi(sigma(x))
    is(n)=my(t=f(n), h=f(t)); while(t!=h, t=f(t); h=f(f(h))); h=f(h); t!=h && t!=(h=f(h)) && t==f(f(h)) \\ Charles R Greathouse IV, Nov 22 2013

A096849 If f(x) = phi(sigma(x)) is iterated starting from these numbers, then the start-value never returns. These are the transient terms of this iteration. Never occur in terminal cycles.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Labos Elemer, Jul 16 2004

Keywords

Examples

			All odd and certain even integers belong here.
		

Crossrefs

Programs

  • Mathematica
    Flatten@ Table[Function[s, If[Length@ # > 0, First@ #, #] &@ Keys@ KeySelect[s, Length@ Lookup[s, #] == 1 &]]@ PositionIndex@ NestList[EulerPhi@ DivisorSigma[1, #] &, n, 10^2], {n, 71}] (* Michael De Vlieger, Jul 24 2017 *)
Showing 1-10 of 11 results. Next