cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096012 Numbers k such that k^2+1 and (k+2)^2+1 are both prime; twin k^2+1 primes.

Original entry on oeis.org

2, 4, 14, 24, 54, 124, 204, 384, 464, 634, 644, 714, 1094, 1144, 1174, 1244, 1274, 1314, 1374, 1564, 1614, 1674, 1684, 1964, 2054, 2084, 2094, 2404, 2454, 2534, 2664, 2834, 2924, 3134, 3304, 3534, 3754, 3774, 4024, 4154, 4174, 4364, 4604, 4614, 4734, 4784
Offset: 1

Views

Author

Jason Earls, Jul 20 2004

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..5000] | IsPrime(n^2+1) and IsPrime((n+2)^2+1)]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Select[Range[5000],AllTrue[{#^2+1,(#+2)^2+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 23 2014 *)
    Select[Range[5000], PrimeQ[#^2 + 1] && PrimeQ[(# + 2)^2 + 1] &] (* Vincenzo Librandi, Feb 27 2016 *)
  • PARI
    isok(n) = isprime(n^2+1) && isprime((n+2)^2+1); \\ Michel Marcus, Feb 27 2016

Formula

a(k) = A108814(k) - 1. - Jeppe Stig Nielsen, Feb 26 2016