A096025 Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 6 and (n+7) mod 9 <> 1.
843, 1683, 3363, 4203, 5883, 6723, 8403, 9243, 10923, 11763, 13443, 14283, 15963, 16803, 18483, 19323, 21003, 21843, 23523, 24363, 26043, 26883, 28563, 29403, 31083, 31923, 33603, 34443, 36123, 36963, 38643, 39483, 41163, 42003, 43683
Offset: 1
Examples
843 mod 2 = 844 mod 3 = 845 mod 4 = 846 mod 5 = 847 mod 6 = 848 mod 7 = 849 mod 8 = 1 and 850 mod 9 = 4, hence 843 is in the sequence.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[n: n in [1..44000] | forall{j: j in [0..6] | IsOne((n+j) mod (2+j)) and (n+7) mod 9 ne 1}]; // Bruno Berselli, Apr 11 2013
-
Mathematica
LinearRecurrence[{1,1,-1},{843,1683,3363},40] (* Harvey P. Dale, Nov 22 2015 *)
-
PARI
{k=7;m=44000;for(n=1,m,j=0;b=1;while(b&&j
Formula
a(n) = -3*(209+70*(-1)^n-420*n). a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: 3*x*(279*x^2+280*x+281) / ((x-1)^2*(x+1)). - Colin Barker, Apr 11 2013
Comments