cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096025 Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 6 and (n+7) mod 9 <> 1.

Original entry on oeis.org

843, 1683, 3363, 4203, 5883, 6723, 8403, 9243, 10923, 11763, 13443, 14283, 15963, 16803, 18483, 19323, 21003, 21843, 23523, 24363, 26043, 26883, 28563, 29403, 31083, 31923, 33603, 34443, 36123, 36963, 38643, 39483, 41163, 42003, 43683
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers n such that n mod 840 = 3 and n mod 2520 <> 3.

Examples

			843 mod 2 = 844 mod 3 = 845 mod 4 = 846 mod 5 = 847 mod 6 = 848 mod 7 = 849 mod 8 = 1 and 850 mod 9 = 4, hence 843 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..44000] | forall{j: j in [0..6] | IsOne((n+j) mod (2+j)) and (n+7) mod 9 ne 1}]; // Bruno Berselli, Apr 11 2013
  • Mathematica
    LinearRecurrence[{1,1,-1},{843,1683,3363},40] (* Harvey P. Dale, Nov 22 2015 *)
  • PARI
    {k=7;m=44000;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

a(n) = -3*(209+70*(-1)^n-420*n). a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: 3*x*(279*x^2+280*x+281) / ((x-1)^2*(x+1)). - Colin Barker, Apr 11 2013