cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A269565 Array read by antidiagonals: T(n,m) is the number of (directed) Hamiltonian paths in K_n X K_m.

Original entry on oeis.org

1, 2, 2, 6, 8, 6, 24, 60, 60, 24, 120, 816, 1512, 816, 120, 720, 17520, 83520, 83520, 17520, 720, 5040, 550080, 8869680, 22394880, 8869680, 550080, 5040, 40320, 23839200, 1621680480, 13346910720, 13346910720, 1621680480, 23839200, 40320
Offset: 1

Views

Author

Andrew Howroyd, Feb 29 2016

Keywords

Comments

Equivalently, the number of directed Hamiltonian paths on the n X m rook graph.
Conjecture: T(n,m) mod n!*m! = 0. - Mikhail Kurkov, Feb 08 2019
The above conjecture is true since a path defines an ordering on the rows and columns by the order in which they are first visited by the path. Every permutation of rows and columns therefore gives a different path. - Andrew Howroyd, Feb 08 2021

Examples

			Array begins:
===========================================================
n\m|    1      2        3            4               5
---+-------------------------------------------------------
1  |    1,     2,       6,          24,            120, ...
2  |    2,     8,      60,         816,          17520, ...
3  |    6,    60,    1512,       83520,        8869680, ...
4  |   24,   816,   83520,    22394880,    13346910720, ...
5  |  120, 17520, 8869680, 13346910720, 50657369241600, ...
...
		

Crossrefs

Main diagonal is A096970.
Columns 2..3 are A096121, A329319.

Formula

From Andrew Howroyd, Oct 20 2019: (Start)
T(n,m) = T(m,n).
T(n,1) = n!. (End)

A329319 Number of (directed) Hamiltonian paths in K_{n} X K_{3}.

Original entry on oeis.org

6, 60, 1512, 83520, 8869680, 1621680480, 472907393280, 207307564531200, 130417226086775040, 113438068529746060800, 132325125941706622848000, 201817805274824171102208000
Offset: 1

Views

Author

Mikhail Kurkov, Nov 10 2019

Keywords

Comments

Equivalently, number of full spectrum rook's walks on a (n X 3) board.

Crossrefs

Column 3 of A269565.
Cf. A096121.

A360878 Number of (undirected) paths in the 2 X n rook graph.

Original entry on oeis.org

1, 12, 129, 1984, 45945, 1524156, 68838217, 4070403744, 305642504529, 28440008182540, 3214141725643761, 433856895597946272, 68964321078341276809, 12753724616472980432124, 2715405762438952565521785, 659549661987730244294458816, 181293528280954206831103494177
Offset: 1

Views

Author

Andrew Howroyd, Feb 25 2023

Keywords

Crossrefs

Row 2 of A360877.

Programs

  • PARI
    a(n)={sum(k=2, n, binomial(n,k)*k!) + sum(k=1, n, k*binomial(n,k)*binomial(k-1,k\2)*sum(i=0, n-k, binomial(n-k,i)*(k\2+i)!)*sum(i=0, n-k, binomial(n-k,i)*((k-1)\2+i)!))} \\ Andrew Howroyd, May 28 2025

Formula

a(n) = (Sum_{k=2..n} binomial(n,k)*k!) + (Sum_{k=1..n} k*binomial(n,k)*binomial(k-1, floor(k/2)) * (Sum_{i=0..n-k} binomial(n-k,i)*(floor(k/2)+i)!) * (Sum_{i=0..n-k} binomial(n-k,i)*(floor((k-1)/2)+i)!)). - Andrew Howroyd, May 28 2025

Extensions

a(8) onwards from Andrew Howroyd, May 28 2025
Showing 1-3 of 3 results.