cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A096970 Number of ways to number the cells of an n X n square grid with 1,2,3,...,n^2 so that successive integers are in the same row or column.

Original entry on oeis.org

1, 8, 1512, 22394880, 50657369241600, 28606505102329400524800, 5959275438217048853558620520448000
Offset: 1

Views

Author

John W. Layman, Jul 16 2004

Keywords

Comments

Suggested by Leroy Quet, Jul 05 2004.
For n >= 2, number of (directed) Hamiltonian paths on the n X n rook graph. - Eric W. Weisstein, Dec 16 2013

Examples

			Among the 4 X 4 grids counted is:
1   2  3 10
15  6  5 11
14 13  4 12
16  7  8  9
		

Crossrefs

Extensions

a(5) from Eric W. Weisstein, Dec 28 2013
a(6)-a(7) from Andrew Howroyd, Feb 29 2016

A269562 Array read by antidiagonals: T(n,m) is the number of Hamiltonian cycles in the rook graph K_n X K_m.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 3, 3, 3, 12, 30, 48, 30, 12, 60, 480, 1566, 1566, 480, 60, 360, 12000, 126120, 284112, 126120, 12000, 360, 2520, 430920, 18153720, 122330880, 122330880, 18153720, 430920, 2520, 20160, 21052080, 4357332000, 112777827840, 335750676480, 112777827840, 4357332000, 21052080, 20160
Offset: 1

Views

Author

Andrew Howroyd, Feb 29 2016

Keywords

Comments

Equivalently, the number of rook tours on an n X m lattice.
2*T(n,m) is divisible by (n-1)!*(m-1)!. - Andrew Howroyd, Feb 08 2021

Examples

			Array begins:
=============================================================
n\m |   1      2          3            4                5
----+--------------------------------------------------------
  1 |   0      0          1            3               12 ...
  2 |   0      1          3           30              480 ...
  3 |   1      3         48         1566           126120 ...
  4 |   3     30       1566       284112        122330880 ...
  5 |  12    480     126120    122330880     335750676480 ...
  6 |  60  12000   18153720 112777827840 2190773906150400 ...
  7 | 360 430920 4357332000 ...
     ...
		

Crossrefs

Column 1 is A001710(n-1) for n >= 3.
Columns 2..4 are A276356, A341498, A341499.
Main diagonal is A269561.

Formula

From Andrew Howroyd, Feb 08 2021: (Start)
T(n,m) = T(m,n).
T(n,1) = (n-1)!/2 for n >= 3. (End)

A286418 Array read by antidiagonals: T(n,m) is the number of (undirected) cycles in the rook graph K_n X K_m.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 7, 14, 14, 7, 37, 170, 312, 170, 37, 197, 2904, 13945, 13945, 2904, 197, 1172, 74779, 1241696, 3228524, 1241696, 74779, 1172, 8018, 2751790, 196846257, 1723178763, 1723178763, 196846257, 2751790, 8018
Offset: 1

Views

Author

Andrew Howroyd, May 08 2017

Keywords

Examples

			Table starts:
================================================
m\n  1    2       3          4             5
--+---------------------------------------------
1 |  0    0       1          7            37 ...
2 |  0    1      14        170          2904 ...
3 |  1   14     312      13945       1241696 ...
4 |  7  170   13945    3228524    1723178763 ...
5 | 37 2904 1241696 1723178763 6198979538330 ...
  ...
		

Crossrefs

Main diagonal is A234624.
Columns 1..3 are A002807, A341500, A341501.

A096121 Number of full spectrum rook's walks on a (2 X n) board.

Original entry on oeis.org

2, 8, 60, 816, 17520, 550080, 23839200, 1365799680, 100053999360, 9127781913600, 1015061950425600, 135193044668774400, 21248464632595200000, 3891825697262043340800, 821745573997874093568000, 198152975926832672858112000, 54121124248225908770856960000, 16621698830590738881776812032000
Offset: 1

Views

Author

Hugo van der Sanden, Jul 22 2004

Keywords

Comments

A rook must land on each square exactly once, but may start and end anywhere and may intersect its own path.
This also gives the number of ways to arrange n pairs of shoes in a row so that no left shoe is next to a right shoe from a different pair. - Jerrold Grossman, Jul 19 2024

Examples

			Tagging the squares on a (3 X 2) board with A,B,C/D,E,F, the 10 tours starting at A are ABCFDE, ABCFED, ABEDFC, ACBEDF, ACBEFD, ACFDEB, ADEBCF, ADEFCB, ADFCBE, ADFEBC. There are a similar 10 tours starting at each of the other 5 squares, so a(3) = 6 * 10 = 60.
		

References

  • Inspired by Leroy Quet in a Jul 05 2004 posting to the Seqfan mailing list.

Crossrefs

Column 2 of A269565.
Cf. A096970 and references to "rook tours" or "rook walks".

Programs

  • Mathematica
    a[1]=2; a[2]=8; a[n_]:= n*(n-1)*(a[n-1] + a[n-2]); Array[a,18] (* Stefano Spezia, Jul 19 2024 *)

Formula

D-finite with recurrence: a(n+1) = n*(n+1)*(a(n) + a(n-1)) for n > 1.
Further refinement gives: a(n+1) = 2*(n+1)! * Sum_{k=0..floor(n/2)} (P(n-k, k) * C(n-k, k) + P(n-k, k+1) * C(n-1-k, i)), where P(i,j) = i!/j!.
Conjecture: a(n) = 2*n!*A102038(n). - Mikhail Kurkov, Feb 07 2019

Extensions

a(16)-a(18) from Stefano Spezia, Jul 19 2024

A329319 Number of (directed) Hamiltonian paths in K_{n} X K_{3}.

Original entry on oeis.org

6, 60, 1512, 83520, 8869680, 1621680480, 472907393280, 207307564531200, 130417226086775040, 113438068529746060800, 132325125941706622848000, 201817805274824171102208000
Offset: 1

Views

Author

Mikhail Kurkov, Nov 10 2019

Keywords

Comments

Equivalently, number of full spectrum rook's walks on a (n X 3) board.

Crossrefs

Column 3 of A269565.
Cf. A096121.

A360877 Array read by antidiagonals: T(m,n) is the number of (undirected) paths in the rook graph K_m X K_n.

Original entry on oeis.org

0, 1, 1, 6, 12, 6, 30, 129, 129, 30, 160, 1984, 4536, 1984, 160, 975, 45945, 310542, 310542, 45945, 975, 6846, 1524156, 38298270, 111933456, 38298270, 1524156, 6846
Offset: 1

Views

Author

Andrew Howroyd, Feb 25 2023

Keywords

Examples

			Array begins:
==============================================
m\n|   1     2        3         4        5 ...
---+------------------------------------------
1  |   0     1        6        30      160 ...
2  |   1    12      129      1984    45945 ...
3  |   6   129     4536    310542 38298270 ...
4  |  30  1984   310542 111933456 ...
5  | 160 45945 38298270 ...
  ...
		

Crossrefs

Main diagonal is A288967.
Rows 1..2 are A038155, A360878.
Showing 1-6 of 6 results.