A269565
Array read by antidiagonals: T(n,m) is the number of (directed) Hamiltonian paths in K_n X K_m.
Original entry on oeis.org
1, 2, 2, 6, 8, 6, 24, 60, 60, 24, 120, 816, 1512, 816, 120, 720, 17520, 83520, 83520, 17520, 720, 5040, 550080, 8869680, 22394880, 8869680, 550080, 5040, 40320, 23839200, 1621680480, 13346910720, 13346910720, 1621680480, 23839200, 40320
Offset: 1
Array begins:
===========================================================
n\m| 1 2 3 4 5
---+-------------------------------------------------------
1 | 1, 2, 6, 24, 120, ...
2 | 2, 8, 60, 816, 17520, ...
3 | 6, 60, 1512, 83520, 8869680, ...
4 | 24, 816, 83520, 22394880, 13346910720, ...
5 | 120, 17520, 8869680, 13346910720, 50657369241600, ...
...
A096969
Number of ways to number the cells of an n X n square grid with 1,2,3,...,n^2 so that successive integers are in adjacent cells (horizontally or vertically).
Original entry on oeis.org
1, 8, 40, 552, 8648, 458696, 27070560, 6046626568, 1490832682992, 1460089659025264, 1573342970540617696, 6905329711608694708440, 33304011435341069362631160, 663618176813467308855850585056, 14527222735920532980525200234503048
Offset: 1
One of the 8648 numberings of a 5 X 5 grid is
.
3---2---1 20--21
| | |
4 17--18--19 22
| | |
5 16--15--14 23
| | |
6 9--10 13 24
| | | | |
7---8 11--12 25
- Andrew Howroyd, Table of n, a(n) for n = 1..17
- Nicolas Bělohoubek, All possible paths in 4th term (552) presented by A..D 1..4 coordination system.
- Nicolas Bělohoubek, All possible paths in 5th term (8648) presented by A..E 1..5 coordination system.
- Nicolas Bělohoubek, All possible paths in 5th term (8648) in image, blue to red.
- Stéphane Duguay and Steven Pigeon, Comparison of Pixel Correlation Induced by Space-Filling Curves on 2D Image Data, The 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (Metz, France, 2019) Vol. 1, 294-297.
- Mary Grace Hanson and David A. Nash, Minimal and maximal Numbrix puzzles, arXiv:1706.09389 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Index entries for sequences related to graphs, Hamiltonian
A234624
Number of (undirected) cycles in the n X n rook graph.
Original entry on oeis.org
0, 1, 312, 3228524, 6198979538330, 3366323909717796339009
Offset: 1
A269561
Number of (undirected) Hamiltonian cycles in the n X n rook graph K_n X K_n.
Original entry on oeis.org
1, 48, 284112, 335750676480, 112249362914249932800, 14994936423694913432308324761600
Offset: 2
A096121
Number of full spectrum rook's walks on a (2 X n) board.
Original entry on oeis.org
2, 8, 60, 816, 17520, 550080, 23839200, 1365799680, 100053999360, 9127781913600, 1015061950425600, 135193044668774400, 21248464632595200000, 3891825697262043340800, 821745573997874093568000, 198152975926832672858112000, 54121124248225908770856960000, 16621698830590738881776812032000
Offset: 1
Tagging the squares on a (3 X 2) board with A,B,C/D,E,F, the 10 tours starting at A are ABCFDE, ABCFED, ABEDFC, ACBEDF, ACBEFD, ACFDEB, ADEBCF, ADEFCB, ADFCBE, ADFEBC. There are a similar 10 tours starting at each of the other 5 squares, so a(3) = 6 * 10 = 60.
- Inspired by Leroy Quet in a Jul 05 2004 posting to the Seqfan mailing list.
Cf.
A096970 and references to "rook tours" or "rook walks".
A234632
Numbers of directed Hamiltonian paths in the n X n black bishop graph.
Original entry on oeis.org
2, 8, 192, 50752, 64264704, 2591115982336, 458135084510273536, 5255224440224669298917376
Offset: 2
A234637
Number of directed Hamiltonian paths in the n X n white bishop graph.
Original entry on oeis.org
2, 8, 192, 24512, 64264704, 784014157824, 458135084510273536, 1135180621552183662673920
Offset: 2
A288967
Number of (undirected) paths on the n X n rook graph.
Original entry on oeis.org
0, 12, 4536, 111933456
Offset: 1
A308141
Number of (undirected) Hamiltonian paths in the n X n rook graph.
Original entry on oeis.org
0, 4, 756, 11197440, 25328684620800, 14303252551164700262400, 2979637719108524426779310260224000
Offset: 1
Showing 1-9 of 9 results.
Comments