cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096144 Triangle T(n,k) = number of partitions of n in which the least part occurs exactly k times, k=1..n.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 4, 1, 1, 0, 1, 4, 3, 2, 1, 0, 1, 7, 3, 2, 1, 1, 0, 1, 8, 6, 2, 3, 1, 1, 0, 1, 12, 5, 6, 2, 2, 1, 1, 0, 1, 14, 11, 5, 4, 3, 2, 1, 1, 0, 1, 21, 11, 8, 5, 4, 2, 2, 1, 1, 0, 1, 24, 17, 11, 9, 4, 5, 2, 2, 1, 1, 0, 1, 34, 20, 15, 9, 8, 4, 4, 2, 2, 1, 1, 0, 1, 41, 30, 18, 14, 9, 7, 5, 4, 2, 2, 1, 1, 0, 1
Offset: 1

Views

Author

Vladeta Jovovic, Jul 24 2004

Keywords

Comments

Reversed rows converge to A002865. - Joerg Arndt, Jul 07 2014
T(n,k) is the number of partitions of n for which the difference between the two largest distinct parts is k (in partitions having only 1 part, we assume that 0 is also a part). This follows easily from the definition by taking the conjugate partitions. Example: T(7,2) = 3 because we have [3,1,1,1,1], [3,3,1], and [4,2,1]. - Emeric Deutsch, Dec 05 2015.

Examples

			Triangle starts:
01:  1
02:  1 1
03:  2 0 1
04:  2 2 0 1
05:  4 1 1 0 1
06:  4 3 2 1 0 1
07:  7 3 2 1 1 0 1
08:  8 6 2 3 1 1 0 1
09: 12 5 6 2 2 1 1 0 1
10: 14 11 5 4 3 2 1 1 0 1
11: 21 11 8 5 4 2 2 1 1 0 1
12: 24 17 11 9 4 5 2 2 1 1 0 1
13: 34 20 15 9 8 4 4 2 2 1 1 0 1
14: 41 30 18 14 9 7 5 ...
T(7,2)=3 because we have: 5+1+1, 3+2+2, 3+2+1+1. - _Geoffrey Critzer_, Jun 20 2014
		

Crossrefs

Cf. A002865 (first column), A096373 (second column), A000041 (row sums).
T(2n,n) gives A232697(n). - Alois P. Heinz, Jun 20 2014

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i=1, x^n,
          `if`(irem(n, i, 'k')=0, x^k, 0)+
           add(b(n-i*j, i-1), j=0..(n-1)/i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jun 20 2014
  • Mathematica
    nn=20;Table[Take[Map[Drop[#,1]&,Drop[CoefficientList[Series[Sum[y x^k/(1-y x^k) Product[1/(1- x^j),{j,k+1,nn}],{k,1,nn}],{x,0,nn}],{x,y}],1]][[i]],i],{i,1,nn}]//Grid (* Geoffrey Critzer, Jun 20 2014 *)

Formula

G.f. for k-th column: sum(m>=1, x^(k*m)/prod(i>=m+1, 1-x^i ) ).