A096144 Triangle T(n,k) = number of partitions of n in which the least part occurs exactly k times, k=1..n.
1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 4, 1, 1, 0, 1, 4, 3, 2, 1, 0, 1, 7, 3, 2, 1, 1, 0, 1, 8, 6, 2, 3, 1, 1, 0, 1, 12, 5, 6, 2, 2, 1, 1, 0, 1, 14, 11, 5, 4, 3, 2, 1, 1, 0, 1, 21, 11, 8, 5, 4, 2, 2, 1, 1, 0, 1, 24, 17, 11, 9, 4, 5, 2, 2, 1, 1, 0, 1, 34, 20, 15, 9, 8, 4, 4, 2, 2, 1, 1, 0, 1, 41, 30, 18, 14, 9, 7, 5, 4, 2, 2, 1, 1, 0, 1
Offset: 1
Examples
Triangle starts: 01: 1 02: 1 1 03: 2 0 1 04: 2 2 0 1 05: 4 1 1 0 1 06: 4 3 2 1 0 1 07: 7 3 2 1 1 0 1 08: 8 6 2 3 1 1 0 1 09: 12 5 6 2 2 1 1 0 1 10: 14 11 5 4 3 2 1 1 0 1 11: 21 11 8 5 4 2 2 1 1 0 1 12: 24 17 11 9 4 5 2 2 1 1 0 1 13: 34 20 15 9 8 4 4 2 2 1 1 0 1 14: 41 30 18 14 9 7 5 ... T(7,2)=3 because we have: 5+1+1, 3+2+2, 3+2+1+1. - _Geoffrey Critzer_, Jun 20 2014
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
T(2n,n) gives A232697(n). - Alois P. Heinz, Jun 20 2014
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i=1, x^n, `if`(irem(n, i, 'k')=0, x^k, 0)+ add(b(n-i*j, i-1), j=0..(n-1)/i)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)): seq(T(n), n=1..20); # Alois P. Heinz, Jun 20 2014
-
Mathematica
nn=20;Table[Take[Map[Drop[#,1]&,Drop[CoefficientList[Series[Sum[y x^k/(1-y x^k) Product[1/(1- x^j),{j,k+1,nn}],{k,1,nn}],{x,0,nn}],{x,y}],1]][[i]],i],{i,1,nn}]//Grid (* Geoffrey Critzer, Jun 20 2014 *)
Formula
G.f. for k-th column: sum(m>=1, x^(k*m)/prod(i>=m+1, 1-x^i ) ).
Comments