A096162 Let n be a number partitioned as n = b_1 + 2*b_2 + ... + n*b_n; then T(n) = (b_1)! * (b_2)! * ... (b_n)!. Irregular triangle read by rows, T(n, k) for n >= 1 and 1 <= k <= A000041(n).
1, 1, 2, 1, 1, 6, 1, 1, 2, 2, 24, 1, 1, 1, 2, 2, 6, 120, 1, 1, 1, 2, 2, 1, 6, 6, 4, 24, 720, 1, 1, 1, 1, 2, 1, 2, 2, 6, 2, 6, 24, 12, 120, 5040, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 6, 2, 4, 2, 24, 24, 6, 12, 120, 48, 720, 40320, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 6, 6, 2, 2, 2, 2, 6, 24, 6, 12, 4, 24, 120
Offset: 1
Examples
Illustrating the formula: 1 1 2 1 3 6 1 4 6 12 24 ... A036038 1 1 1 1 3 1 1 4 3 6 1 ... A036040 so 1 1 2 1 1 6 1 1 2 2 24 ... this sequence. . From _Hartmut F. W. Hoft_, Apr 25 2015: (Start) The sequence as a structured triangle. The column headings indicate the number of elements in the underlying partitions. Brackets indicate groups of the products of factorials for all partitions of the same length when there is more than one partition. 1 2 3 4 5 6 1: 1 2: 1 2 3: 1 1 6 4: 1 [1 2] 2 24 5: 1 [1 1] [2 2] 6 120 6: 1 [1 1 2] [2 1 6] [6 4] 24 720 The partitions, their multiplicities and factorial products associated with the five entries in row n = 4 are: partitions: {4}, [{3, 1}, {2, 2}], {2, 1, 1}, {1, 1, 1, 1} multiplicities: 1, [{1, 1}, 2], {1, 2}, 4 factorial products: 1!, [1!*1!, 2!], 1!*2!, 4! (End)
References
- Abramowitz and Stegun, Handbook of Mathematical Functions, p. 831, column "M_1" divided by "M_3."
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
(* function a096162[ ] computes complete rows of the triangle *) row[n_] := Map[Apply[Times, Map[Factorial, Last[Transpose[Tally[#]]]]]&, GatherBy[IntegerPartitions[n], Length], {2}] triangle[n_] := Map[row, Range[n]] a096162[n_] := Flatten[triangle[n]] Take[a096162[9],90] (* data *) (*Hartmut F. W. Hoft, Apr 25 2015 *)
-
SageMath
from collections import Counter def A096162_row(n): h = lambda p: product(map(factorial, Counter(p).values())) return [h(p) for k in (0..n) for p in Partitions(n, length=k)] for n in (1..9): print(A096162_row(n)) # Peter Luschny, Nov 01 2019
Formula
Appears to be n! / A130561(n); e.g., 4! / (24,24,12,12,1) = (1,1,2,2,24). - Tom Copeland, Nov 12 2017
Extensions
Edited and extended by Christian G. Bower, Jan 17 2006
Comments