cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A096161 Row sums for triangle A096162.

Original entry on oeis.org

1, 3, 8, 30, 133, 768, 5221, 41302, 369170, 3677058, 40338310, 483134179, 6271796072, 87709287104, 1314511438945, 21017751750506, 357102350816602, 6424883282375340, 122025874117476166, 2439726373093186274
Offset: 1

Views

Author

Alford Arnold, Jun 18 2004

Keywords

Comments

Also, partitions such that a set of k equal terms are labeled 1 through k and can appear in any order. For example, the partition 3+2+2+2+1+1+1+1 of 13 appears 1!*3!*4!=144 times because there are 1! ways to order the one "3," 3! ways to order the three "2"s, ... - Christian G. Bower, Jan 17 2006

Examples

			1 1 2 1 3 6 1 4 6 12 24 ... A036038
1 1 1 1 3 1 1 4 3 6 1 ... A036040
1 1 2 1 1 6 1 1 2 2 24 ... A096162
so a(n) begins 1 3 8 30 ... A096161
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; Rest[CoefficientList[Series[Product[Sum[k!*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 10 2019 *)
    m = 25; Rest[CoefficientList[Series[Product[-Gamma[0, -1/x^j] * Exp[-1/x^j], {j, 1, m}] / x^(m*(m + 1)/2), {x, 0, m}], x]] (* Vaclav Kotesovec, Dec 07 2020 *)
  • PARI
    { my(n=25); Vec(prod(k=1, n, O(x*x^n) + sum(r=0, n\k, x^(r*k)*r!))) }

Formula

G.f.: B(x)*B(x^2)*B(x^3)*... where B(x) is g.f. of A000142. - Christian G. Bower, Jan 17 2006
G.f.: Product_{k>0} Sum_{r>=0} x^(r*k)*r!. - Andrew Howroyd, Dec 22 2017
a(n) ~ n! * (1 + 1/n^2 + 2/n^3 + 7/n^4 + 28/n^5 + 121/n^6 + 587/n^7 + 3205/n^8 + 19201/n^9 + 123684/n^10 + ...), for coefficients see A293266. - Vaclav Kotesovec, Aug 10 2019

Extensions

More terms from Vladeta Jovovic, Jun 22 2004

A178888 Irregular table A035206(n,k)*A096162(n,k), read by rows.

Original entry on oeis.org

1, 2, 2, 3, 6, 6, 4, 12, 12, 24, 24, 5, 20, 20, 60, 60, 120, 120, 6, 30, 30, 30, 120, 120, 120, 360, 360, 720, 720, 7, 42, 42, 42, 210, 210, 210, 210, 840, 840, 840, 2520, 2520, 5040, 5040, 8, 56, 56, 56, 56, 336, 336, 336, 336, 336, 1680, 1680, 1680, 1680, 1680, 6720, 6720, 6720, 20160, 20160
Offset: 1

Views

Author

Alford Arnold, Jun 21 2010

Keywords

Examples

			A035206 begins 1 2 1 3 6 1 4 12 6 12 1 ...
A096162 begins 1 1 2 1 1 6 1 1 2 2 24 ...
therefore
A178888 begins 1 2 2 3 6 6 4 12 12 24 24 ...
with row sums 1,4,15,76,405,2616,18613,151432,1367649...A178887
		

Crossrefs

Cf. A035206, A096162, A178887 (row sums).

A178883 Multiply, cell by cell, the sequences A096162, A048996 and A178886.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 6, 8, 4, 18, 24, 24, 24, 24, 36, 36, 96, 120, 120, 96, 96, 48, 108, 216, 36, 192, 288, 600, 720, 720, 480, 480, 480, 432, 864, 432, 432, 576, 1728, 576, 1200, 2400, 4320, 5040
Offset: 1

Views

Author

Alford Arnold, Jun 23 2010

Keywords

Comments

Shape sequence for this irregular table is A000041.

Examples

			Row 3: (1,1,6) times (1,2,1) times (2,2,1) yielding (2,4,6) with row sum 12 agreeing with 1,3,12,60,360,...; cf. A001700.
		

Crossrefs

Cf. A162608, A001710 (row sums). - Alford Arnold, Sep 28 2010

Extensions

More terms from Alford Arnold, Sep 28 2010

A179233 Irregular triangle T(n,k) = A049019(n,k)/A096162(n,k) read along rows, 1<=k <= A000041(n).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 8, 3, 18, 1, 1, 10, 20, 30, 45, 40, 1, 1, 12, 30, 10, 45, 360, 15, 80, 270, 75, 1, 1, 14, 42, 70, 63, 630, 210, 315, 140, 2520, 420, 175, 1050, 126, 1, 1, 16, 56, 112, 35, 84, 1008, 1680, 630, 840, 224, 5040, 1680
Offset: 1

Views

Author

Alford Arnold, Jul 08 2010

Keywords

Comments

Each row n of A049019, of A096162 and of the triangle here has A000041(n) entries.

Examples

			A049019(.,.) begins 1; 1; 2, 1; 6, 6, 1; 8, 6, 36, 24, ...
A096162(.,.) begins 1; 1; 2, 1; 1, 6, 1; 1, 2, 2, 24 ...
so
T(.,.) begins ..... 1; 1; 1, 1; 6, 1, 1; 8, 3, 18, 1 ...
		

Crossrefs

Formula

T(n,k) = A049019(n,k) / A096162(n,k) = A048996(n,k) * A036040(n,k).
Sum_{k=1..A000041(n)} T(n,k) = A120774(n).

Extensions

Extended, and bivariate indices restored - R. J. Mathar, Jul 13 2010

A179236 Irregular triangle T(n,k) = A096162(n,k)* A036040(n,k)* A048996(n,k)*A098546(n,k)* A178886(n,k) read by rows, 1<=k<=A000041(n).

Original entry on oeis.org

1, 2, 2, 6, 36, 6, 24, 192, 72, 432, 24, 120, 1200, 2400, 3600, 5400, 4800, 120, 720, 8640, 21600, 7200, 32400, 259200, 10800, 57600, 194400, 54000, 720, 5040, 70560, 211680, 352800, 317520, 3175200, 1058400, 1587600, 705600, 12700800, 2116800, 882000, 5292000, 635040, 5040, 40320, 645120, 2257920, 4515840
Offset: 1

Views

Author

Alford Arnold, Jul 04 2010

Keywords

Examples

			The factor sequences begin
1..1..2..1..1..6
1..1..1..1..3..1
1..1..1..1..2..1
1..2..1..3..3..1
1..1..1..2..2..1
so the present sequence begins
1..2..2..6..36..6
		

Crossrefs

Cf. A000041 (row lengths) A096161 A000110 A000079 A098545 A000522 A179235 (row sums)

A121457 a(n) = A096162(n) * A036039(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 6, 8, 6, 12, 24, 24, 30, 20, 40, 30, 60, 120, 120, 144, 90, 80, 180, 120, 90, 240, 180, 360, 720, 720, 840, 504, 420, 1008, 630, 560, 420, 1260, 840, 630, 1680, 1260, 2520, 5040, 5040, 5760, 3360, 2688, 2520, 6720, 4032, 3360, 2520, 2240, 8064
Offset: 1

Views

Author

Alford Arnold, Jul 31 2006

Keywords

Comments

Refines A007841 using partitions associated with least prime signatures.

Examples

			The table begins
1
1 2
2 3 6
6 8 6 12 24
24 30 20 40 30 60 120
		

Crossrefs

Extensions

More terms from Justin Eaton (jeaton2(AT)ashland.edu), Oct 18 2006

A036038 Triangle of multinomial coefficients.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720, 1, 7, 21, 35, 42, 105, 140, 210, 210, 420, 630, 840, 1260, 2520, 5040, 1, 8, 28, 56, 70, 56, 168, 280, 420, 560, 336, 840, 1120, 1680, 2520, 1680, 3360, 5040, 6720
Offset: 1

Views

Author

Keywords

Comments

The number of terms in the n-th row is the number of partitions of n, A000041(n). - Amarnath Murthy, Sep 21 2002
For each n, the partitions are ordered according to A-St: first by length and then lexicographically (arranging the parts in nondecreasing order), which is different from the usual practice of ordering all partitions lexicographically. - T. D. Noe, Nov 03 2006
For this ordering of the partitions, for n >= 1, see the remarks and the C. F. Hindenburg link given in A036036. - Wolfdieter Lang, Jun 15 2012
The relation (n+1) * A134264(n+1) = A248120(n+1) / a(n) where the arithmetic is performed for matching partitions in each row n connects the combinatorial interpretations of this array to some topological and algebraic constructs of the two other entries. Also, these seem (cf. MOPS reference, Table 2) to be the coefficients of the Jack polynomial J(x;k,alpha=0). - Tom Copeland, Nov 24 2014
The conjecture on the Jack polynomials of zero order is true as evident from equation a) on p. 80 of the Stanley reference, suggested to me by Steve Kass. The conventions for denoting the more general Jack polynomials J(n,alpha) vary. Using Stanley's convention, these Jack polynomials are the umbral extensions of the multinomial expansion of (s_1*x_1 + s_2*x_2 + ... + s_(n+1)*x_(n+1))^n in which the subscripts of the (s_k)^j in the symmetric monomial expansions are finally ignored and the exponent dropped to give s_j(alpha) = j-th row polynomial of A094638 or |A008276| in ascending powers of alpha. (The MOPS table has some inconsistency between n = 3 and n = 4.) - Tom Copeland, Nov 26 2016

Examples

			1;
1, 2;
1, 3,  6;
1, 4,  6, 12, 24;
1, 5, 10, 20, 30, 60, 120;
1, 6, 15, 20, 30, 60,  90, 120, 180, 360, 720;
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".

Crossrefs

Cf. A036036-A036040. Different from A078760. Row sums give A005651.
Cf. A183610 is a table of sums of powers of terms in rows.
Cf. A134264 and A248120.
Cf. A096162 for connections to A130561.

Programs

  • Maple
    nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036038(n, m) := n!/ (mul((t!)^q(t), t=1..n)); od: od: seq(seq(A036038(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
  • Mathematica
    Flatten[Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i],  Length[ #1]>Length[ #2]&]], {1}], {i,9}]] (* T. D. Noe, Nov 03 2006 *)
  • Sage
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A036038_row(n):
        return [multinomial(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A036038_row(n))
    # Peter Luschny, Dec 18 2016, corrected Apr 30 2022

Formula

The n-th row is the expansion of (x_1 + x_2 + ... + x_(n+1))^n in the basis of the monomial symmetric polynomials (m.s.p.). E.g., (x_1 + x_2 + x_3 + x_4)^3 = m[3](x_1,..,x_4) + 3*m[1,2](x_1,..,x_4) + 6*m[1,1,1](x_1,..,x_4) = (Sum_{i=1..4} x_i^3) + 3*(Sum_{i,j=1..4;i != j} x_i^2 x_j) + 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k). The number of indeterminates can be increased indefinitely, extending each m.s.p., yet the expansion coefficients remain the same. In each m.s.p., unique combinations of exponents and subscripts appear only once with a coefficient of unity. Umbral reduction by replacing x_k^j with x_j in the expansions gives the partition polynomials of A248120. - Tom Copeland, Nov 25 2016
From Tom Copeland, Nov 26 2016: (Start)
As an example of the umbral connection to the Jack polynomials: J(3,alpha) = (Sum_{i=1..4} x_i^3)*s_3(alpha) + 3*(Sum_{i,j=1..4;i!=j} x_i^2 x_j)*s_2(alpha)*s_1(alpha)+ 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k)*s_1(alpha)*s_1(alpha)*s_1(alpha) = (Sum_{i=1..4} x_i^3)*(1+alpha)*(1+2*alpha)+ 3*(sum_{i,j=1..4;i!=j} x_i^2 x_j)*(1+alpha) + 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k).
See the Copeland link for more relations between the multinomial coefficients and the Jack symmetric functions. (End)

Extensions

More terms from David W. Wilson and Wouter Meeussen

A130561 Numbers associated to partitions, used for combinatoric interpretation of Lah triangle numbers A105278; elementary Schur polynomials / functions.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 24, 12, 12, 1, 120, 120, 120, 60, 60, 20, 1, 720, 720, 720, 360, 360, 720, 120, 120, 180, 30, 1, 5040, 5040, 5040, 5040, 2520, 5040, 2520, 2520, 840, 2520, 840, 210, 420, 42, 1, 40320, 40320, 40320, 40320, 20160, 20160, 40320, 40320, 20160
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The order of this array is according to the Abramowitz-Stegun (A-St) ordering of partitions (see A036036).
The row lengths sequence is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
These numbers are similar to M_0, M_1, M_2, M_3, M_4 given in A111786, A036038, A036039, A036040, A117506, respectively.
Combinatorial interpretation: a(n,k) counts the sets of lists (ordered subsets) obtained from partitioning the set {1..n}, with the lengths of the lists given by the k-th partition of n in A-St order. E.g., a(5,5) is computed from the number of sets of lists of lengths [1^1,2^2] (5th partition of 5 in A-St order). Hence a(5,5) = binomial(5,2)*binomial(3,2) = 5!/(1!*2!) = 60 from partitioning the numbers 1,2,...,5 into sets of lists of the type {[.],[..],[..]}.
This array, called M_3(2), is the k=2 member of a family of partition arrays generalizing A036040 which appears as M_3 = M_3(k=1). S2(2) = A105278 (unsigned Lah number triangle) is related to M_3(2) in the same way as S2(1), the Stirling2 number triangle, is related to M_3(1). - Wolfdieter Lang, Oct 19 2007
Another combinatorial interpretation: a(n,k) enumerates unordered forests of increasing binary trees which are described by the k-th partition of n in the Abramowitz-Stegun order. - Wolfdieter Lang, Oct 19 2007
A relation between partition polynomials formed from these "refined Lah numbers" and Lagrange inversion for an o.g.f. is presented in the link "Lagrange a la Lah" along with an e.g.f. and an umbral binary operator tree representation. - Tom Copeland, Apr 12 2011
With the indeterminates (x_1,x_2,x_3,...) = (t,-c_2*t,-c_3*t,...) with c_n >0, umbrally P(n,a.) = P(n,t)|{t^n = a_n} = 0 and P(j,a.)P(k,a.) = P(j,t)P(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A133437. - Tom Copeland, Feb 09 2018
Divided by n!, the row partition polynomials are the elementary homogeneous Schur polynomials presented on p. 44 of the Bracci et al. paper. - Tom Copeland, Jun 04 2018
Also presented (renormalized) as the Schur polynomials on p. 19 of the Konopelchenko and Schief paper with associations to differential operators related to the KP hierarchy. - Tom Copeland, Nov 19 2018
Through equation 4.8 on p. 26 of the Arbarello reference, these polynomials appear in the Hirota bilinear equations 4.7 related to tau-function solutions of the KP hierarchy. - Tom Copeland, Jan 21 2019
These partition polynomials appear as Feynman amplitudes in their Bell polynomial guise (put x_n = n!c_n in A036040 for the indeterminates of the Bell polynomials) in Kreimer and Yeats and Balduf (e.g., p. 27). - Tom Copeland, Dec 17 2019
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)
These partition polynomials are referred to as Schur functions by Segal and Wilson, who present associations with Plucker coordinates, Grassmannians, and the tau functions of the KdV hierarchy. See pages 51 and 61. - Tom Copeland, Jan 08 2022

Examples

			Triangle starts:
  [  1];
  [  2,   1];
  [  6,   6,   1];
  [ 24,  24,  12, 12,  1];
  [120, 120, 120, 60, 60, 20, 1];
  ...
a(5,6) = 20 = 5!/(3!*1!) because the 6th partition of 5 in A-St order is [1^3,2^1].
a(5,5) = 60 enumerates the unordered [1^1,2^2]-forest with 5 vertices (including the three roots) composed of three such increasing binary trees: 5*((binomial(4,2)*2)*(1*2))/2! = 5*12 = 60.
		

References

  • E. Arbarello, "Sketches of KdV", Contemp. Math. 312 (2002), p. 9-69.

Crossrefs

Cf. A105278 (unsigned Lah triangle |L(n, m)|) obtained by summing the numbers for given part number m.
Cf. A000262 (row sums), identical with row sums of unsigned Lah triangle A105278.
A134133(n, k) = A130561(n, k)/A036040(n, k) (division by the M_3 numbers). - Wolfdieter Lang, Oct 12 2007
Cf. A096162.
Cf. A133437.
Cf. A127671.

Formula

a(n,k) = n!/(Product_{j=1..n} e(n,k,j)!) with the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1.
From Tom Copeland, Sep 18 2011: (Start)
Raising and lowering operators are given for the partition polynomials formed from A130561 in the Copeland link in "Lagrange a la Lah Part I" on pp. 22-23.
An e.g.f. for the partition polynomials is on page 3:
exp[t*:c.*x/(1-c.*x):] = exp[t*(c_1*x + c_2*x^2 + c_3*x^3 + ...)] where :(...): denotes umbral evaluation of the enclosed expression and c. is an umbral coefficient. (End)
From Tom Copeland, Sep 07 2016: (Start)
The row partition polynomials of this array P(n,x_1,x_2,...,x_n), given in the Lang link, are n! * S(n,x_1,x_2,...,x_n), where S(n,x_1,...,x_n) are the elementary Schur polynomials, for which d/d(x_m) S(n,x_1,...,x_n) = S(n-m,x_1,...,x_(n-m)) with S(k,...) = 0 for k < 0, so d/d(x_m) P(n,x_1,...,x_n) = (n!/(n-m)!) P(n-m,x_1,...,x_(n-m)), confirming that the row polynomials form an Appell sequence in the indeterminate x_1 with P(0,...) = 1. See p. 127 of the Ernst paper for more on these Schur polynomials.
With the e.g.f. exp[t * P(.,x_1,x_2,..)] = exp(t*x_1) * exp(x_2 t^2 + x_3 t^3 + ...), the e.g.f. for the partition polynomials that form the umbral compositional inverse sequence U(n,x_1,...,x_n) in the indeterminate x_1 is exp[t * U(.,x_1,x_2,...)] = exp(t*x_1) exp[-(x_2 t^2 + x_3 t^3 + ...)]; therefore, U(n,x_1,x_2,...,x_n) = P(n,x_1,-x_2,.,-x_n), so umbrally P[n,P(.,x_1,-x_2,-x_3,...),x_2,x_3,...,x_n] = (x_1)^n = P[n,P(.,x_1,x_2,...),-x_2,-x_3,...,-x_n]. For example, P(1,x_1) = x_1, P2(x_1,x_2) = 2 x_2 + x_1^2, and P(3,x_1,x_2,x_3) = 6 x_3 + 6 x_2 x_1 + x_1^3, then P[3,P(.,x_1,-x_2,...),x_2,x_3] = 6 x_3 + 6 x_2 P(1,x_1) + P(3,x_1,-x_2,-x_3) = 6 x_3 + 6 x_2 x_1 + 6 (-x_3) + 6 (-x_2) x_1 + x_1^3 = x_1^3.
From the Appell formalism, umbrally [P(.,0,x_2,x_3,...) + y]^n = P(n,y,x_2,x_3,...,x_n).
The indeterminates of the partition polynomials can also be extracted using the Faber polynomials of A263916 with -n * x_n = F(n,S(1,x_1),...,S(n,x_1,...,x_n)) = F(n,P(1,x_1),...,P(n,x_1,...,x_n)/n!). Compare with A263634.
Also P(n,x_1,...,x_n) = ST1(n,x_1,2*x_2,...,n*x_n), where ST1(n,...) are the row partition polynomials of A036039.
(End)

Extensions

Name augmented by Tom Copeland, Dec 08 2022

A156289 Triangle read by rows: T(n,k) is the number of end rhyme patterns of a poem of an even number of lines (2n) with 1<=k<=n evenly rhymed sounds.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 63, 210, 105, 1, 255, 2205, 3150, 945, 1, 1023, 21120, 65835, 51975, 10395, 1, 4095, 195195, 1201200, 1891890, 945945, 135135, 1, 16383, 1777230, 20585565, 58108050, 54864810, 18918900, 2027025, 1, 65535, 16076985
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 07 2009

Keywords

Comments

T(n,k) is the number of partitions of a set of size 2*n into k blocks of even size [Comtet]. For partitions into odd sized blocks see A136630.
See A241171 for the triangle of ordered set partitions of the set {1,2,...,2*n} into k even sized blocks. - Peter Bala, Aug 20 2014
This triangle T(n,k) gives the sum over the M_3 multinomials A036040 for the partitions of 2*n with k even parts, for 1 <= k <= n. See the triangle A257490 with sums over the entries with k parts, and the Hartmut F. W. Hoft program. - Wolfdieter Lang, May 13 2015

Examples

			The triangle begins
  n\k|..1.....2......3......4......5......6
  =========================================
  .1.|..1
  .2.|..1.....3
  .3.|..1....15.....15
  .4.|..1....63....210....105
  .5.|..1...255...2205...3150....945
  .6.|..1..1023..21120..65835..51975..10395
  ..
T(3,3) = 15. The 15 partitions of the set [6] into three even blocks are:
  (12)(34)(56), (12)(35)(46), (12)(36)(45),
  (13)(24)(56), (13)(25)(46), (13)(26)(45),
  (14)(23)(56), (14)(25)(36), (14)(26)(35),
  (15)(23)(46), (15)(24)(36), (15)(26)(34),
  (16)(23)(45), (16)(24)(35), (16)(25)(34).
Examples of recurrence relation
 T(4,3) = 5*T(3,2) + 9*T(3,3) = 5*15 + 9*15 = 210;
 T(6,5) = 9*T(5,4) + 25*T(5,5) = 9*3150 + 25*945 = 51975.
 T(4,2) = 28 + 35 = 63 (M_3 multinomials A036040 for partitions of 8 with 3 even parts, namely (2,6) and (4^2)). - _Wolfdieter Lang_, May 13 2015
		

References

  • L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pages 225-226.

Crossrefs

Diagonal T(n, n) is A001147, subdiagonal T(n+1, n) is A001880.
2nd column variant T(n, 2)/3, for 2<=n, is A002450.
3rd column variant T(n, 3)/15, for 3<=n, is A002451.
Sum of the n-th row is A005046.

Programs

  • Maple
    T := proc(n,k) option remember; `if`(k = 0 and n = 0, 1, `if`(n < 0, 0,
    (2*k-1)*T(n-1, k-1) + k^2*T(n-1, k))) end:
    for n from 1 to 8 do seq(T(n,k), k=1..n) od; # Peter Luschny, Sep 04 2017
  • Mathematica
    T[n_,k_] := Which[n < k, 0, n == 1, 1, True, 2/Factorial2[2 k] Sum[(-1)^(k + j) Binomial[2 k, k + j] j^(2 n), {j, 1, k}]]
    (* alternate computation with function triangle[] defined in A257490 *)
    a[n_]:=Map[Apply[Plus,#]&,triangle[n],{2}]
    (* Hartmut F. W. Hoft, Apr 26 2015 *)

Formula

Recursion: T(n,1)=1 for 1<=n; T(n,k)=0 for 1<=n
Generating function for the k-th column of the triangle T(i+k,k):
G(k,x) = Sum_{i>=0} T(i+k,k)*x^i = Product_{j=1..k} (2*j-1)/(1-j^2*x).
Closed form expression: T(n,k) = (2/(k!*2^k))*Sum_{j=1..k} (-1)^(k-j)*binomial(2*k,k-j)*j^(2*n).
From Peter Bala, Feb 21 2011: (Start)
GENERATING FUNCTION
E.g.f. (including a constant 1):
(1)... F(x,z) = exp(x*(cosh(z)-1))
= Sum_{n>=0} R(n,x)*z^(2*n)/(2*n)!
= 1 + x*z^2/2! + (x + 3*x^2)*z^4/4! + (x + 15*x^2 + 15*x^3)*z^6/6! + ....
ROW POLYNOMIALS
The row polynomials R(n,x) begin
... R(1,x) = x
... R(2,x) = x + 3*x^2
... R(3,x) = x + 15*x^2 + 15*x^3.
The egf F(x,z) satisfies the partial differential equation
(2)... d^2/dz^2(F) = x*F + x*(2*x+1)*F' + x^2*F'',
where ' denotes differentiation with respect to x. Hence the row polynomials satisfy the recurrence relation
(3)... R(n+1,x) = x*{R(n,x) + (2*x+1)*R'(n,x) + x*R''(n,x)}
with R(0,x) = 1. The recurrence relation for T(n,k) given above follows from this.
(4)... T(n,k) = (2*k-1)!!*A036969(n,k).
(End)

A120774 Number of ordered set partitions of [n] where equal-sized blocks are ordered with increasing least elements.

Original entry on oeis.org

1, 1, 2, 8, 31, 147, 899, 5777, 41024, 322488, 2749325, 25118777, 245389896, 2554780438, 28009868787, 323746545433, 3933023224691, 49924332801387, 661988844566017, 9138403573970063, 131043199040556235, 1949750421507432009, 30031656711776544610
Offset: 0

Author

Alford Arnold, Jul 12 2006

Keywords

Comments

Old name was: Row sums of A179233.
a(n) is the number of ways to linearly order the blocks in each set partition of {1,2,...,n} where two blocks are considered identical if they have the same number of elements. - Geoffrey Critzer, Sep 29 2011

Examples

			A179233 begins 1; 1; 1 1; 6 1 1; 8 3 18 1 1 ... with row sums 1, 1 2 8 31 147 ...
a(3) = 8: 123, 1|23, 23|1, 2|13, 13|2, 3|12, 12|3, 1|2|3. - _Alois P. Heinz_, Apr 27 2017
		

Crossrefs

Row sums of A179233, A285824.
Main diagonal of A327244.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          (p+n)!/n!, add(b(n-i*j, i-1, p+j)*combinat
          [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 27 2017
  • Mathematica
    f[{x_,y_}]:= x!^y y!;   Table[Total[Table[n!,{PartitionsP[n]}]/Apply[Times,Map[f,Map[Tally,Partitions[n]],{2}],2] * Apply[Multinomial,Map[Last,Map[Tally,Partitions[n]],{2}],2]],{n,0,20}]  (* Geoffrey Critzer, Sep 29 2011 *)

Extensions

Leading 1 inserted, definition simplified by R. J. Mathar, Sep 28 2011
a(15) corrected, more terms, and new name (using Geoffrey Critzer's comment) from Alois P. Heinz, Apr 27 2017
Showing 1-10 of 11 results. Next