cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096173 Numbers k such that k^3+1 is an odd semiprime.

Original entry on oeis.org

2, 4, 6, 16, 18, 22, 28, 42, 58, 60, 70, 72, 78, 100, 102, 106, 112, 148, 156, 162, 190, 210, 232, 280, 310, 330, 352, 358, 382, 396, 448, 456, 490, 568, 606, 672, 756, 786, 820, 826, 828, 856, 858, 876, 928, 970, 982, 1008, 1012, 1030, 1068, 1092, 1108, 1150
Offset: 1

Views

Author

Hugo Pfoertner, Jun 20 2004

Keywords

Comments

Numbers n such that n^3 + 1 is a semiprime, because then n^3 + 1 must be odd, since n^3 + 1 = (n+1)*(n^2 - n + 1) is a semiprime only if n+1 is odd. - Jonathan Sondow, Feb 02 2014
Obviously, n + 1 is always a prime number. Sequence is intersection of A006093 and A055494. - Altug Alkan, Dec 20 2015

Examples

			a(1)=2 because 2^3+1=9=3*3, a(13)=100: 100^3+1=1000001=101*9901.
		

Crossrefs

Cf. A001358; A081256: largest prime factor of k^3+1; A096174: (k^3+1)/(k+1) is prime; A046315, A237037, A237038, A237039, A237040.

Programs

  • Magma
    [n: n in [1..2*10^3] | IsPrime(n+1) and IsPrime(n^2-n+1)]; // Vincenzo Librandi, Dec 21 2015
  • Maple
    select(n -> isprime(n+1) and isprime(n^2-n+1), [seq(2*i,i=1..1000)]); # Robert Israel, Dec 20 2015
  • Mathematica
    Select[Range[1200], PrimeQ[#^2 - # + 1] && PrimeQ[# + 1] &] (* Jonathan Sondow, Feb 02 2014 *)
  • PARI
    for(n=1, 1e5, if(bigomega(n^3+1)==2, print1(n, ", "))); \\ Altug Alkan, Dec 20 2015
    

Formula

a(n) = 2*A237037(n) = (A237040(n)-1)^(1/3). - Jonathan Sondow, Feb 02 2014

Extensions

Corrected by Zak Seidov, Mar 08 2006