A096199 Numbers such that in binary representation the length is a multiple of the number of ones.
1, 2, 3, 4, 7, 8, 9, 10, 12, 15, 16, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 48, 49, 50, 52, 56, 63, 64, 127, 128, 129, 130, 132, 135, 136, 139, 141, 142, 144, 147, 149, 150, 153, 154, 156, 160, 163, 165, 166, 169, 170, 172, 177, 178, 180, 184, 192, 195, 197
Offset: 1
Examples
400 -> '110010000' with 3 binary ones and length = 9 = 3*3, therefore 400 is a term.
Links
Programs
-
Maple
q:= n-> (l-> irem(nops(l), add(i, i=l))=0)(Bits[Split](n)): select(q, [$1..200])[]; # Alois P. Heinz, Feb 04 2022
-
Mathematica
lmnQ[n_]:=Module[{idn2=IntegerDigits[n,2]},Divisible[Length[idn2],Count[ idn2,1]]]; Select[Range[200],lmnQ] (* Harvey P. Dale, Jul 27 2019 *)
-
Perl
$cnt=1;foreach $n(1..100_000){$_=sprintf ("%b",$n); print $cnt++," $n\n" unless (length)%s/1//g;}
Comments