cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096258 Number of partitions of n into distinct nonprime parts.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 4, 5, 5, 4, 6, 8, 8, 9, 11, 11, 13, 16, 17, 19, 22, 23, 27, 31, 32, 36, 43, 47, 52, 57, 61, 70, 80, 84, 93, 105, 114, 127, 141, 150, 167, 188, 202, 220, 244, 264, 291, 322, 346, 377, 416, 450, 493, 540, 580, 633, 696, 750, 814, 888
Offset: 0

Views

Author

Vladeta Jovovic, Jul 31 2004

Keywords

Crossrefs

Cf. A002095.
Cf. A204389.

Programs

  • Haskell
    a096258 = p a018252_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 15 2012
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+ `if`(i>n or isprime(i), 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..70);  # Alois P. Heinz, May 29 2013
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^n)/(1 + x^Prime[n]), {n, 70}], {x, 0, 67}], x] (* Robert G. Wilson v, Aug 02 2004 *)

Formula

G.f.: Product_{i>0} (1+x^i)/(1+x^prime(i)).

Extensions

More terms from Robert G. Wilson v, Aug 02 2004