cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096270 Fixed point of the morphism 0->01, 1->011.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2004

Keywords

Comments

This is another version of the Fibonacci word A005614.
(With offset 1) for k>0, a(ceiling(k*phi^2))=0 and a(floor(k*phi^2))=1 where phi=(1+sqrt(5))/2 is the Golden ratio. - Benoit Cloitre, Apr 01 2006
(With offset 1) for n>1 a(A000045(n)) = (1-(-1)^n)/2.
Equals the Fibonacci word A005614 with an initial zero.
Also the Sturmian word of slope phi (cf. A144595). - N. J. A. Sloane, Jan 13 2009
More precisely: (a(n)) is the inhomogeneous Sturmian word of slope phi-1 and intercept 0: a(n) = floor((n+1)*(phi-1)) - floor(n*(phi-1)), n >= 0. - Michel Dekking, May 21 2018
The ratio of number of 1's to number of 0's tends to the golden ratio (1+sqrt(5))/2 = 1.618... - Zak Seidov, Feb 15 2012

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

Crossrefs

Cf. A003849, A096268, A001519. See A005614, A114986 for other versions.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [-1+Floor(n*(1+Sqrt(5))/2)-Floor((n-1)*(1+Sqrt(5))/2): n in [1..100]]; // Wesley Ivan Hurt, Aug 29 2022
  • Mathematica
    Nest[ Function[l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {0, 1, 1}})]}], {0}, 6] (* Robert G. Wilson v, Feb 04 2005 *)
  • PARI
    a(n)=-1+floor(n*(1+sqrt(5))/2)-floor((n-1)*(1+sqrt(5))/2) \\ Benoit Cloitre, Apr 01 2006
    
  • Python
    from math import isqrt
    def A096270(n): return (n+1+isqrt(5*(n+1)**2)>>1)-(n+isqrt(5*n**2)>>1)>>1 # Chai Wah Wu, Aug 29 2022
    

Formula

Conjecture: a(n) is given recursively by a(1)=0 and, for n>1, by a(n)=1 if n=F(2k+1) and a(n)=a(n-F(2k+1)) otherwise, where F(2k+1) is the largest odd-indexed Fibonacci number smaller than or equal to n. (This has been confirmed for more than nine million terms.) The odd-indexed bisection of the Fibonacci numbers (A001519) is {1, 2, 5, 13, 34, 89, ...}. So by the conjecture, we would expect that a(30) = a(30-13) = a(17) = a(17-13) = a(4) = a(4-2) = a(2) = 1, which is in fact correct. - John W. Layman, Jun 29 2004
From Michel Dekking, Apr 13 2016: (Start)
Proof of the above conjecture:
Let g be the morphism above: g(0)=01, g(1)=011. Then g^n(0) has length F(2n+1), and (a(n)) starts with g^n(0) for all n>0. Obviously g^n(0) ends in 1 for all n, proving the first part of the conjecture.
We extend the semigroup of words with letters 0 and 1 to the free group, adding the inverses 0*:=0^{-1} and 1*:=1^{-1}. Easy observation: for any word w one has g(w1)= g(w0)1. We claim that for all n>1 one has g^n(0)=u(n)v(n)v(n)0*1, where u(n)=g(u(n-1))0 and v(n)=0*g(v(n-1))0. The recursion starts with u(2)=0, v(2)=10. Indeed: g^2(0)=01011=u(2)v(2)v(2)0*1. Induction step:
g^{n+1}(0)=g(g^n(0))= g(u(n)v(n)v(n)0*1)= g(u(n)v(n)v(n))1= g(u(n))00*g(v(n))00*g(v(n))00*1=u(n+1)v(n+1)v(n+1)0*1.
Since v(n) has length F(2n-1), which is the largest odd-indexed Fibonacci number smaller than or equal to m for all m between F(2n-1) and F(2n+1), the claim proves the second part of the conjecture. (End)
(With offset 1) a(n) = -1 + floor(n*phi) - floor((n-1)*phi) where phi=(1+sqrt(5))/2 so a(n) = -1 + A082389(n). - Benoit Cloitre, Apr 01 2006

Extensions

More terms from John W. Layman, Jun 29 2004