cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096276 Number of partitions of n with a product <=n.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 12, 14, 16, 17, 21, 22, 24, 26, 31, 32, 36, 37, 41, 43, 45, 46, 53, 55, 57, 60, 64, 65, 70, 71, 78, 80, 82, 84, 93, 94, 96, 98, 105, 106, 111, 112, 116, 120, 122, 123, 135, 137, 141, 143, 147, 148, 155, 157, 164, 166, 168, 169, 180, 181, 183, 187
Offset: 0

Views

Author

Jon Perry, Jun 23 2004

Keywords

Comments

The Heinz numbers of these partitions are given by A325044. - Gus Wiseman, Mar 27 2019

Examples

			a(6)=8 as we can have 6, 51, 411, 321, 3111, 2211, 21111, 111111, rejecting 42, 33 and 222.
From _Gus Wiseman_, Mar 27 2019: (Start)
The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (51)      (61)       (71)
             (111)  (31)    (221)    (321)     (511)      (611)
                    (211)   (311)    (411)     (3211)     (4211)
                    (1111)  (2111)   (2211)    (4111)     (5111)
                            (11111)  (3111)    (22111)    (22211)
                                     (21111)   (31111)    (32111)
                                     (111111)  (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

References

  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n>k, 0, 1)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+g(n$2)) end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 26 2023
  • Mathematica
    c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; Join[{0}, Accumulate[Array[a, 100]]] (* using program from A001055, T. D. Noe, Apr 11 2011 *)
    Table[Length[Select[IntegerPartitions[n],Times@@#<=n&]],{n,0,20}] (* Gus Wiseman, Mar 27 2019 *)
  • PARI
    { bla(n,m,v,z)=v=concat(v,m); if(!n,x=prod(k=1,length(v),v[k]); if (x<=z,c++), for(i=1,min(m,n),bla(n-i,i,v,z))); }
    q(n)=c=0;for(i=1,n,bla(n-i,i,[],n));print1(c, ", ");
    for(i=0,40,q(i))

Formula

For n>1, a(n) = a(n-1)+1 iff n is prime.
Partial sums of A001055. - Vladeta Jovovic, Jun 24 2004
a(n) ~ n * exp(2*sqrt(log(n))) / (2*sqrt(Pi) * (log(n))^(3/4)) [Oppenheim, 1927]. - Vaclav Kotesovec, May 23 2020

Extensions

More terms from Vladeta Jovovic, Jun 24 2004