cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096288 Sum of digits of n in bases 2 and 3.

Original entry on oeis.org

0, 2, 3, 3, 3, 5, 4, 6, 5, 3, 4, 6, 4, 6, 7, 7, 5, 7, 4, 6, 6, 6, 7, 9, 6, 8, 9, 5, 5, 7, 6, 8, 5, 5, 6, 8, 4, 6, 7, 7, 6, 8, 7, 9, 9, 7, 8, 10, 6, 8, 9, 9, 9, 11, 6, 8, 7, 7, 8, 10, 8, 10, 11, 9, 5, 7, 6, 8, 8, 8, 9, 11, 6, 8, 9, 9, 9, 11, 10, 12, 10, 4, 5, 7, 5, 7, 8, 8, 7, 9, 6, 8, 8, 8, 9, 11, 6, 8, 9, 7
Offset: 0

Views

Author

Miklos Kristof, Peter Boros, Jun 24 2004

Keywords

Comments

Let n = Sum(c(k)*2^k), c(k) = 0,1, be the binary form of n, n = Sum(d(k)*3^k), d(k) = 0,1,2, the ternary form; then a(n) = Sum(c(k)+d(k)).
a(n) mod 2 = doubled Thue-Morse sequence A095190.
Let s[b](n) denote the sum of the digits of n to the base b. Senge and Straus proved in 1973 that s[a](n) + s[b](n) approaches infinity as n approaches infinity if and only if log(a)/log(b) is irrational. Stewart (1980) obtained an effectively computable lower bound. - David Radcliffe, Jan 16 2024

Examples

			n=11: 11=1*2^3+1*2^1+1*2^0, 1+1+1=3, 11=1*3^2+2*3^0, 1+2=3, so a(11)=3+3=6.
		

Crossrefs

Programs

  • Maple
    f := proc(n) local t1,t2,i;
    t1:=convert(n,base,2); t2:=convert(n,base,3);
    add(t1[i],i=1..nops(t1))+ add(t2[i],i=1..nops(t2));
    end; # N. J. A. Sloane, Dec 05 2019
  • Mathematica
    a[n_] := Total @ IntegerDigits[n, 2] + Total @ IntegerDigits[n, 3];
    a /@ Range[0, 100] (* Jean-François Alcover, Aug 21 2020 *)
    Table[Total[Flatten[IntegerDigits[n,{2,3}]]],{n,0,100}] (* Harvey P. Dale, Jan 29 2021 *)
  • PARI
    a(n) = sumdigits(n, 2) + sumdigits(n, 3); \\ Michel Marcus, Aug 21 2020
    
  • Python
    sumdigits = lambda n, b: n % b + sumdigits(n // b, b) if n else 0
    a = lambda n: sumdigits(n, 2) + sumdigits(n, 3) # David Radcliffe, Jan 16 2024

Formula

a(n) = A000120(n) + A053735(n). - Amiram Eldar, Jul 28 2023
a(n) > (log log n) / (log log log n + C) - 1 for n > 25, where C is effectively computable (Stewart 1980). - David Radcliffe, Jan 16 2024

Extensions

Edited by N. J. A. Sloane, Dec 05 2019