cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308037 a(n) = Sum_{d|n} Stirling2(n,d).

Original entry on oeis.org

1, 2, 2, 9, 2, 123, 2, 1830, 3027, 43038, 2, 2023728, 2, 49337473, 213142023, 2313595723, 2, 216927216877, 2, 6712023695345, 82312699558575, 366282502967439, 2, 113350450913387211, 2436684974110753, 1850568574287104493, 106563274551407600878, 231678790379913209098, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(Stirling2(n, d), d=numtheory[divisors](n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 10 2019
  • Mathematica
    a[n_] := a[n] = Sum[StirlingS2[n, d], {d, Divisors[n]}]; Table[a[n], {n, 1, 29}]
  • PARI
    a(n) = sumdiv(n, d, stirling(n, d, 2)); \\ Michel Marcus, May 10 2019

Formula

a(n) = 2 <=> n is prime <=> n in { A000040 }. - Alois P. Heinz, May 10 2019

A309169 a(n) = Product_{d|n} |Stirling1(n,d)|.

Original entry on oeis.org

1, 1, 2, 66, 24, 7398000, 720, 445824751680, 4762759680, 100329999065856000, 3628800, 1019618790465528595884298768746577920000, 479001600, 97532934291415606872784896000, 5460491900297503751785620701184000, 1567611138605648558776157123803950409816473600000
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; mul(abs(combinat:-stirling1(n,d)),d=numtheory:-divisors(n)) end proc:
    map(f, [$1..30]); # Robert Israel, Jul 15 2019
  • Mathematica
    Table[Product[Abs[StirlingS1[n, d]], {d, Divisors[n]}], {n, 1, 16}]
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, abs(stirling(n, d[k], 1))); \\ Michel Marcus, Jul 16 2019

A309910 a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * floor(n/k).

Original entry on oeis.org

1, 3, 10, 53, 266, 2093, 14512, 134705, 1317724, 14339429, 156052942, 2243410945, 28893239818, 421448538895, 6810085942104, 117497037128065, 1980909279322608, 38790292385240321, 730946685781179418, 15916872348230275385, 346942995035062132634, 7767365425379382284307
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) StirlingS1[n, k] Floor[n/k] , {k, 1, n}], {n, 1, 22}]
    Table[SeriesCoefficient[1/(1 - x) Sum[(-1)^(n - k) StirlingS1[n, k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 1, 22}]
    Table[Sum[Sum[(-1)^(n - d) StirlingS1[n, d], {d, Divisors[k]}], {k, 1, n}], {n, 1, 22}]
  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k)*stirling(n, k, 1) * (n\k)); \\ Michel Marcus, Aug 23 2019

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * x^k/(1 - x^k).
a(n) = Sum_{k=1..n} Sum_{d|k} (-1)^(n-d) * Stirling1(n,d).
Showing 1-3 of 3 results.