A096330 Number of 3-connected planar graphs on n labeled nodes.
1, 25, 1227, 84672, 7635120, 850626360, 112876089480, 17381709797760, 3046480841900160, 598731545755324800, 130389773403373545600, 31163616486434838067200, 8109213009296586130944000, 2282014010657773764160588800, 690521215428258768326957184000
Offset: 4
Keywords
References
- M. Bodirsky, C. Groepl and M. Kang: Generating Labeled Planar Graphs Uniformly At Random; ICALP03 Eindhoven, LNCS 2719, Springer Verlag (2003), 1095 - 1107.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.
Links
- Gheorghe Coserea, Table of n, a(n) for n = 4..104
- M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, pp. 377-386.
Programs
-
PARI
Q(n,k) = { \\ c-nets with n-edges, k-vertices if (k < 2+(n+2)\3 || k > 2*n\3, return(0)); sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2* (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) - 4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1)))); }; a(n) = sum(k=(3*n+1)\2, 3*n-6, n!*Q(k,n)/(4*k)); apply(a, [4..18]) \\ Gheorghe Coserea, Aug 11 2017
Comments