A096334 Triangle read by rows: T(n,k) = prime(n)#/prime(k)#, 0<=k<=n.
1, 2, 1, 6, 3, 1, 30, 15, 5, 1, 210, 105, 35, 7, 1, 2310, 1155, 385, 77, 11, 1, 30030, 15015, 5005, 1001, 143, 13, 1, 510510, 255255, 85085, 17017, 2431, 221, 17, 1, 9699690, 4849845, 1616615, 323323, 46189, 4199, 323, 19, 1, 223092870, 111546435, 37182145, 7436429, 1062347, 96577, 7429, 437, 23, 1
Offset: 0
Examples
Triangle begins: 1; 2, 1; 6, 3, 1; 30, 15, 5, 1; 210, 105, 35, 7, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n=k, 1, T(n-1, k)*ithprime(n)) end: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 21 2022
-
Mathematica
T[n_, k_] := Times @@ Prime[Range[k + 1, n]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 13 2021 *)
-
PARI
pr(n) = factorback(primes(n)); \\ A002110 row(n) = my(P=pr(n)); vector(n+1, k, P/pr(k-1)); \\ Michel Marcus, Jan 21 2022
Formula
T(n,0) = A002110(n); T(n,n) = 1;
T(n,n-1) = A000040(n) for n>0;
T(n,k) = Product_{j=k+1..n} prime(j). - Alois P. Heinz, Jan 21 2022
Comments