A002956 Number of basic invariants for cyclic group of order and degree n.
1, 2, 4, 7, 15, 20, 48, 65, 119, 166, 348, 367, 827, 974, 1494, 2135, 3913, 4038, 7936, 8247, 12967, 17476, 29162, 28065, 49609, 59358, 83420, 97243, 164967, 152548, 280352, 295291, 405919, 508162, 674630, 708819, 1230259, 1325732, 1709230
Offset: 1
References
- M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 208.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. W. Strom, Complete systems of invariants of the cyclic groups of equal order and degree, Proc. Iowa Acad. Sci., 55 (1948), 287-290.
Links
- Finklea, Moore, Ponomarenko and Turner, Invariant Polynomials and Minimal Zero Sequences, to appear in Communications in Algebra.
- Bryson W. Finklea, Terri Moore, Vadim Ponomarenko and Zachary J. Turner, Invariant polynomials and minimal zero sequences, Involve, 1:2 (2008), pp. 159-165.
- Vadim Ponomarenko, Table
- Vadim Ponomarenko, Programs
Formula
a(n) = A096337(n) + 1. - Filip Zaludek, Oct 26 2016
Extensions
More terms from Vadim Ponomarenko (vadim123(AT)gmail.com), Jun 29 2004
Comments