cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Klaus Pommerening

Klaus Pommerening's wiki page.

Klaus Pommerening has authored 1 sequences.

A296303 Number of minimal nonnegative nonzero solutions of the linear Diophantine equation x_1 + 2*x_2 + ... + n*x_n = y_1 + 2*y_2 + ... + n*y_n.

Original entry on oeis.org

1, 4, 13, 34, 99, 210, 559, 1164, 2531, 4940, 10735
Offset: 1

Author

Klaus Pommerening, Dec 10 2017

Keywords

Comments

Every linear Diophantine equation with arbitrary integer coefficients may be reduced to this one.
The minimal nonnegative nonzero solutions form a generating system of the semigroup of all nonnegative solutions.
The asymptotic behavior of a(n) is unknown, it is somewhere between a*exp(b*sqrt(n))/(sqrt(n)) and c*exp(d*n)/n with positive real numbers a,b,c,d.
A096337 contains the number of minimal nonnegative nonzero solutions of the linear congruence x_1 + 2 x_2 + ... + (n-1) x_{n-1} == 0 (mod n). There is an obvious relation with a(n) since every solution (x_1, ..., x_{n-1}) of the linear congruence yields a solution (x_1, ..., x_{n-1}; 0, 0, ..., 0, k) of the linear Diophantine equation.

Examples

			The 13 minimal solutions for n=3 are (x-coordinates followed by y-coordinates): (0,0,1;0,0,1), (0,0,1;1,1,0), (0,0,1;3,0,0), (0,0,2;0,3,0), (0,1,0;0,1,0), (0,1,0;2,0,0), (0,2,0;1,0,1), (0,3,0;0,0,2), (1,0,0;1,0,0), (1,0,1;0,2,0), (1,1,0;0,0,1), (2,0,0;0,1,0), (3,0,0;0,0,1).
		

Crossrefs

Programs

  • Python
    See Pommerening link.

Formula

Lower and upper bounds (proved) are a(n) >= 2*A026905(n) for n >= 3 and a(n) <= A002894(n-1).