cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096430 Numerator of (9*(n^4 - 2*n^3 + 2*n^2 - n) + 2)/(2*(2*n-1)).

Original entry on oeis.org

1, 28, 38, 703, 1891, 4186, 8128, 2873, 23653, 36856, 54946, 79003, 22043, 149878, 199396, 260281, 334153, 84548, 527878, 651511, 795691, 962578, 230888, 1373653, 1622701, 1904176, 2220778, 515063, 2970703, 3409966, 3896236
Offset: 1

Views

Author

Eric W. Weisstein, Aug 09 2004

Keywords

Examples

			1, 28/3, 38, 703/7, 1891/9, 4186/11, ... = A096430/A096431.
		

Crossrefs

Cf. A096431 (denominators), A097362.

Programs

  • Magma
    A096430:= func< n | Numerator((9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1))) >;
    [A096430(n): n in [1..50]]; // G. C. Greubel, Oct 14 2024
    
  • Maple
    A096430:=n->numer((9*(n^4 - 2*n^3 + 2*n^2 - n) + 2)/(2*(2*n-1))): seq(A096430(n), n=1..50); # Wesley Ivan Hurt, Jan 21 2017
  • Mathematica
    Table[Numerator[(9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1))], {n,50}] (* G. C. Greubel, Oct 14 2024 *)
  • SageMath
    def A096430(n): return numerator((9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1)))
    [A096430(n) for n in range(1,51)] # G. C. Greubel, Oct 14 2024