A096464
Let p(k)/q(k) = A096456(k)/A096463(k) be the k-th convergent to Pi/2; sequence gives numbers n such that |tan(p(n))|/p(n) sets a new maximal record.
Original entry on oeis.org
1, 4, 118, 136, 315, 3727, 3763, 15503, 153396, 156559, 984404, 1119377
Offset: 1
The fifth term is 315. This means that at p(315), which is a number near 2.37*10^154, |tan(p(315))|/p(315) sets a new record, a number near 556.31.
A002485
Numerators of convergents to Pi.
Original entry on oeis.org
0, 1, 3, 22, 333, 355, 103993, 104348, 208341, 312689, 833719, 1146408, 4272943, 5419351, 80143857, 165707065, 245850922, 411557987, 1068966896, 2549491779, 6167950454, 14885392687, 21053343141, 1783366216531, 3587785776203, 5371151992734, 8958937768937
Offset: 0
The convergents are 0, 1, 3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317, 312689/99532, 833719/265381, 1146408/364913, 4272943/1360120, 5419351/1725033, 80143857/25510582, 165707065/52746197, 245850922/78256779, 411557987/131002976, 1068966896/340262731, 2549491779/811528438, ... = A002485/A002486
- P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors).
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
- P. Finsler, Über die Faktorenzerlegung natuerlicher Zahlen, Elemente der Mathematik, 2 (1947), 1-11, see p. 7.
- K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274.
- Daniel Mondot, Table of n, a(n) for n = 0..1947 (terms 0..201 from T. D. Noe, terms 202..1000 from G. C. Greubel).
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- Marc Daumas, Des implantations differentes ..., see p. 8. [Broken link]
- Henryk Fuks, Adam Adamandy Kochanski's approximations of Pi: reconstruction of the algorithm, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014. Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
- S. K. Lucas, Integral approximations to Pi with nonnegative integrands
- Mathematics Stack Exchange, Is there an integral that proves pi > 333/106
- G. P. Michon, Continued Fractions
- Eric Weisstein's World of Mathematics, Pi
- Eric Weisstein's World of Mathematics, Pi Continued Fraction
- Eric Weisstein's World of Mathematics, Pi Approximations
- Index entries for sequences related to the number Pi
Cf.
A096456 (numerators of convergents to Pi/2).
-
Digits := 60: E := Pi; convert(evalf(E),confrac,50,'cvgts'): cvgts;
-
Join[{0, 1}, Numerator @ Convergents[Pi,29]] (* Jean-François Alcover, Apr 08 2011 *)
-
contfracpnqn(cf=contfrac(Pi),#cf)[1,] \\ M. F. Hasler, Apr 01 2013, simplified Oct 13 2020
-
e=9e9;for(n=1,1e9,abs(tan(n)) 0 monotonically. - M. F. Hasler, Apr 01 2013
A332095
Numbers m such that 0 <= m*tan(m) < 1, ordered by |m|.
Original entry on oeis.org
0, -3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, -6167950454, -21053343141, -42106686282, -63160029423, -84213372564, -105266715705, -8958937768937, -17917875537874, -428224593349304, -856449186698608, -6134899525417045
Offset: 1
-
is_A332095(n)={tan(n)*n < 1 && n*tan(n) >= 0}
for(n=0,oo, n*abs(tan(n))<1 && print1(sign(tan(n))*n", "))
/* Much faster: apply to numerators of convergents of Pi the function check(n) which prints all nonzero k*n in the sequence and returns the largest such k, largest in magnitude, possibly negative. N.B.: stops when (k+1)n is not in the sequence, so e.g., n = 11 (in convergents of Pi/2) does not give 22 and 44! */
print1(0); apply( {check(n)=for(i=1,oo,abs(i*n*tan(i*n))<1||return(sign(tan(n))*(i-1)); print1(", "sign(tan(n*i))*i*n))}, contfracpnqn(c=contfrac(Pi),#c)[1,]) \\ M. F. Hasler, Oct 09 2020
A337371
Integers k with abs(sin(k)) < 1/k.
Original entry on oeis.org
1, 3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, 6167950454, 21053343141, 42106686282, 63160029423, 84213372564, 105266715705, 8958937768937, 17917875537874, 428224593349304, 856449186698608, 6134899525417045
Offset: 1
-
Select[Range[3200], Abs[Sin[#]] < 1/# &] (* Amiram Eldar, Aug 25 2020 *)
-
print1(1);apply( n-> forstep(n=n,oo,n,abs(sin(n))<1/n||return; print1(","n)), contfracpnqn(c=contfrac(Pi),#c)[1,]); \\ M. F. Hasler, Oct 09 2020
-
import numpy as np
for x in range(1, 10**9):
if np.abs(np.sin(x)) < 1/x:
print(x, end=", ")
A096463
Denominators of convergents to Pi/2.
Original entry on oeis.org
1, 2, 7, 219, 226, 32989, 33215, 165849, 364913, 3085153, 3450066, 23785549, 27235615, 78256779, 262005952, 340262731, 1623056876, 1963319607, 11439654911, 13402974518, 560961610149, 574364584667, 1709690779483
Offset: 1
1, 2, 3/2, 11/7, 344/219, 355/226, ...
A346033
a(n) is the smallest integer k > 0 such that 10^(-n-1) < |sin(k) - round(sin(k))| < 10^(-n).
Original entry on oeis.org
1, 2, 14, 55, 33, 11, 35489, 46849, 50754, 51819, 52174, 260515, 1719612, 573204, 21104200, 37362253, 42781604, 122925461, 534483448
Offset: 0
For n = 3, a(n) = 55 because 55 is the smallest positive integer k such that 10^(-4) < |sin(k) - round(sin(k))| < 10^(-3): |sin(55) - round(sin(55))| = 0.000244....
Showing 1-6 of 6 results.
Comments