A096731 Values of continued fraction for Pi/2 associated with the records in A096464.
1, 31, 84, 116, 873, 4319, 16555, 38112, 67828, 358274, 372743, 16186423
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
1.013959132360768504294574338885914687561179280077717316877048512268137...
$MaxExtraPrecision = 128; RealDigits[ Chop[ N[ I/2*(PolyLog[2, E^-I] - PolyLog[2, E^I]), 105]]][[1]] (* Robert G. Wilson v, Aug 16 2004 *)
imag(polylog(2,exp(I))) \\ Charles R Greathouse IV, Jul 14 2014
{ta = Table[0, {1300}], tb = Table[0, {1300}], tc = Table[0, {1300}], u = 1}; Do[s = Prime[n + 1] - Prime[n]; If[s == 2, ta[[u]] = Prime[Prime[n + 1]] - Prime[Prime[n]]; tb[[u]] = n; tc[[u]] = Prime[n]; u = u + 1], {n, 1, 10000}]; a[n_] := tc[[FirstPosition[ta, 2 n][[1]]]]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Jul 28 2017, using Mathematica code for A096464 *)
a(n) = {forprime(p=3, , if (isprime(p+2) && (prime(2+p)-prime(p) == 2*n), return (p))); p=3;} \\ Michel Marcus, Jul 28 2017
list(len) = {my(v = vector(len), c = 0, q = 2, p1 = 2, p2 = 3, i); forprime(p3 = 5, , q++; if(isprime(q) && isprime(q-2), i = (p3-p1)/2 - 2; if(i <= len && v[i]==0, v[i] = q-2; c++; if(c == len, break))); p1 = p2; p2 = p3); v;} \\ Amiram Eldar, Feb 14 2025
Comments