cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096444 Decimal expansion of (Pi - 1)/2.

Original entry on oeis.org

1, 0, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3, 3, 9, 9, 1, 0, 7
Offset: 1

Views

Author

N. J. A. Sloane, Aug 16 2004

Keywords

Comments

From Bernard Schott, Apr 19 2021: (Start)
The series Sum_{k>=1} sin(k)/k and also Sum_{k>=1} cos(k)/k (A121225) are called Fresnel series.
The series Sum_{k>=1} |sin(k)/k| is divergent. (End)

Examples

			1.0707963267948966...
		

References

  • Xavier Merlin, Methodix Analyse, Ellipses, 1997, p. 117.

Crossrefs

Programs

Formula

Equals Sum_{k >= 1} sin(k)/k. (This follows from the identity x = Pi - 2 Sum_{k >= 1} sin(k*x)/k, as observed by Euler in 1744.)
Equals A019669 minus 1/2. - R. J. Mathar, Dec 15 2008
Equals Sum_{k >= 1} (sin(k)/k)^2. (Interestingly, Sum_{k >= 1} sin(k)/k = Sum_{k >= 1} (sin(k)/k)^2, a series whose terms sum to the sum of the square of each term.) - Dimitri Papadopoulos, Mar 11 2015
Equals arctan(sin(1)/(1-cos(1))). - Amiram Eldar, Jun 06 2021

Extensions

More terms from Robert G. Wilson v, Aug 17 2004
Better definition from Eric W. Weisstein, Aug 18 2004

A342680 Decimal expansion of Sum_{n>=1} sin(sin(n)/n).

Original entry on oeis.org

9, 6, 1, 3, 9, 4, 3, 1, 5, 9, 4, 5, 7, 3, 6, 5, 4, 7, 2, 4, 7, 6, 4, 5, 9, 5, 3, 1, 6, 1, 5, 4, 7, 3, 0, 6, 8, 6, 8, 5, 8, 2, 6, 9, 3, 0, 1, 0, 5, 8, 4, 6, 0, 4, 5, 5, 1, 1, 5, 1, 4, 9, 1, 8, 1, 8, 6, 3, 3, 7, 8, 0, 2, 9, 1, 4, 6, 9, 9, 7, 0, 6, 6, 7, 5, 4, 2, 4, 3, 2, 5, 5, 4, 9, 5, 5, 5, 5, 2, 6, 9, 8, 7, 9, 2
Offset: 0

Views

Author

Bernard Schott, Mar 18 2021

Keywords

Comments

Abel summation shows the series is convergent.

Examples

			0.96139431594573654724764595316154730686858269301058...
		

References

  • Konrad Knopp, Theory and Application of Infinite Series, Blackie, 1928, p. 313.
  • Jean-Marie Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice C.3.7 2.3.b)4. p. 309.

Crossrefs

Programs

  • Magma
    nDgtsOutput:=110; nDgtsPrecision:=nDgtsOutput+10; SetDefaultRealField(RealField(nDgtsPrecision)); kMax:=Ceiling(1.395*nDgtsPrecision-3); mMax:=Ceiling(1.5*kMax); sum:=0.0; S1:=[0.0 : j in [1..kMax]]; n:=0; for m in [1..mMax] do S2:=S1; for k in [1..355] do n:=n+1; sum+:=Sin(Sin(n)/n); end for; S1[1]:=sum; for j in [1..kMax-1] do S1[j+1]:=(S2[j]+S1[j])/2; end for; end for; ChangePrecision(S1[#S1], nDgtsOutput); // The constants 1.395 and 1.5 were empirically derived; 355 is used because 355/Pi is very close to an odd integer. - Jon E. Schoenfield, Mar 21 2021

Extensions

a(3)-a(104) from Jon E. Schoenfield, Mar 20 2021

A122143 Decimal expansion of Sum_{k >= 1} cos(k)/k^2.

Original entry on oeis.org

3, 2, 4, 1, 3, 7, 7, 4, 0, 0, 5, 3, 3, 2, 9, 8, 1, 7, 2, 4, 1, 0, 9, 3, 4, 7, 5, 0, 0, 6, 2, 7, 3, 7, 4, 7, 1, 2, 0, 3, 6, 5, 2, 0, 1, 5, 1, 9, 2, 4, 5, 5, 2, 7, 2, 4, 8, 0, 8, 5, 9, 3, 3, 2, 1, 6, 0, 9, 9, 2, 6, 7, 2, 6, 0, 0, 9, 6, 3, 7, 4, 5, 1, 9, 6, 1, 1, 4, 8, 7, 9, 4, 8, 7, 0, 0, 1, 7, 1, 3, 1, 2, 9, 3
Offset: 0

Views

Author

T. D. Noe, Aug 28 2006

Keywords

Comments

Also, decimal expansion of the real part of Sum_{k>=1} e^(i*k)/k^2. [Bruno Berselli, Mar 24 2013]

Examples

			0.324137740053329817241093475006273747120365201519245527248085933216...
		

Crossrefs

Cf. A096418 (decimal expansion of Sum_{k >= 1} sin(k)/k^2).

Programs

  • Mathematica
    Print[x=FullSimplify[Sum[Cos[n]/n^2, {n,Infinity}]]]; RealDigits[N[x,110]][[1]]
  • PARI
    (2*Pi*(Pi-3)+3)/12 \\ Jianing Song, Nov 09 2019

Formula

Equals (2*Pi*(Pi-3)+3)/12.

A223709 Decimal expansion of (Pi-1)*(2*Pi-1)/12.

Original entry on oeis.org

9, 4, 2, 8, 6, 9, 2, 3, 6, 7, 8, 4, 1, 1, 1, 4, 6, 0, 1, 9, 0, 0, 8, 7, 6, 5, 4, 1, 5, 9, 4, 8, 2, 8, 0, 1, 5, 0, 2, 9, 9, 0, 8, 8, 4, 6, 9, 6, 3, 5, 5, 3, 1, 5, 8, 2, 5, 1, 5, 5, 4, 1, 4, 6, 2, 6, 3, 8, 6, 7, 0, 2, 1, 6, 4, 9, 8, 1, 9, 5, 7, 5, 0, 9, 9, 5, 3
Offset: 0

Views

Author

Bruno Berselli, Mar 26 2013

Keywords

Comments

Let p = sum(sin(k)/k, k>=1) = (Pi-1)/2 (A096444) and q = sum(sin(k/2)/k, k>=1) = (2*Pi-1)/4, then A223709 = (2/3)*p*q.
This is the case h=1 in sum(sin(k/h)/k^3, k>=1) = (h*Pi-1)*(2h*Pi-1)/(12*h^3) = ((h*Pi-1)/(2h))*((2h*Pi-1)/(4h))*(2/(3h)), where (j*Pi-1)/(2j) = sum(sin(k/j)/k, k>=1) and 1/j is real but not an integer multiple of 2Pi.

Examples

			0.9428692367841114601900876541594828015029908846963553...
		

References

  • Tom M. Apostol, Calculus, Vol. 1, John Wiley & Sons, 1967 (2nd ed.). This constant is the case s=1, t=3 in sum(sin(n*s)/n^t, n>=1), see p. 409.

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi - 1) (2 Pi - 1)/12, 10, 90][[1]]

Formula

Equals sum(sin(k)/k^3, k>=1).

A329247 Decimal expansion of Sum_{k>=1} cos(k*Pi/6)/k.

Original entry on oeis.org

6, 5, 8, 4, 7, 8, 9, 4, 8, 4, 6, 2, 4, 0, 8, 3, 5, 4, 3, 1, 2, 5, 2, 3, 1, 7, 3, 6, 5, 3, 9, 8, 4, 2, 2, 2, 0, 1, 3, 4, 9, 0, 9, 8, 5, 7, 3, 3, 7, 5, 8, 2, 3, 9, 8, 8, 4, 2, 3, 6, 1, 2, 8, 4, 6, 0, 2, 3, 0, 0, 9, 2, 7, 0, 8, 2, 2, 1, 9, 8, 8, 0, 3, 7, 1, 0, 9, 5, 0, 6, 7
Offset: 0

Views

Author

Jianing Song, Nov 09 2019

Keywords

Comments

Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit.
In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then:
(a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1;
(b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1;
(c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1.
As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi.

Examples

			0.65847894846240835431252317365398422201349098573375...
		

Crossrefs

Similar sequences:
A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i))));
A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i))));
this sequence (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6))));
A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i))));
A329246 (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4))));
A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i))));
A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i))));
A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))).

Programs

  • Maple
    Digits := 100: (log(2 + sqrt(3))/2)*10^91:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Nov 09 2019
  • Mathematica
    RealDigits[Log[2 + Sqrt[3]]/2, 10, 100][[1]] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    default(realprecision, 100); log(2 + sqrt(3))/2

Formula

Equals log(2 + sqrt(3))/2.
Equals -log(2*sin(Pi/12)).
Equals arccoth(sqrt(3)). - Amiram Eldar, Dec 05 2021
From Amiram Eldar, Mar 26 2022: (Start)
Equals arcsinh(1/sqrt(2)).
Equals Sum_{n>=1} arcsinh(1/(sqrt(2^(n+2)+2)+sqrt(2^(n+1)+2))) (Vălean, 2106). (End)
log(2 + sqrt(3))/2 = Sum_{n >= 1} 1/(n*P(n, sqrt(3))*P(n-1, sqrt(3))), where P(n, x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation log(2 + sqrt(3))/2 = 0.658478948(35...) correct to 9 decimal places. - Peter Bala, Mar 16 2024

A329246 Decimal expansion of Sum_{k>=1} cos(k*Pi/4)/k.

Original entry on oeis.org

2, 6, 7, 3, 9, 9, 9, 9, 8, 3, 6, 9, 7, 8, 5, 1, 8, 5, 2, 6, 1, 9, 9, 6, 6, 3, 2, 1, 2, 5, 3, 5, 2, 0, 1, 2, 4, 9, 5, 2, 0, 5, 1, 3, 0, 5, 4, 0, 7, 5, 3, 8, 9, 1, 8, 4, 6, 4, 7, 7, 8, 0, 1, 9, 5, 3, 3, 4, 0, 1, 8, 6, 6, 1, 8, 5, 8, 9, 3, 6, 5, 0, 1, 5, 3, 8, 7, 6, 1, 4, 2
Offset: 0

Views

Author

Jianing Song, Nov 09 2019

Keywords

Comments

Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit.
In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then:
(a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1;
(b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1;
(c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1.
As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi.

Examples

			Sum_{k>=1} cos(k*Pi/4)/k = -log(2*|sin(Pi/8)|) = 0.2673999983...
		

Crossrefs

Similar sequences:
A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i))));
A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i))));
A329247 (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6))));
A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i))));
this sequence (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4))));
A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i))));
A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i))));
A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))).

Programs

  • Mathematica
    RealDigits[Log[1 + Sqrt[2]/2]/2, 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    default(realprecision, 100); log(1 + sqrt(2)/2)/2

Formula

Equals log(1 + sqrt(2)/2)/2.

A351738 Decimal expansion of Sum_{k>0} sin(sqrt(k)) / k.

Original entry on oeis.org

1, 7, 1, 5, 6, 7, 1, 7, 9, 4, 7, 0, 9
Offset: 1

Views

Author

Bernard Schott, May 20 2022

Keywords

Comments

Sum_{k>0} sin(k^alpha) / (k^beta) with 0 < alpha < 1 is convergent if beta > max(alpha, 1-alpha); the constant of this sequence corresponds to the case alpha = 1/2 and beta = 1 (see Arnaudiès).
Consequence: Sum_{k>0} sin(k^(1/m)) / k converges for any positive integer m.
The sequence converges slowly.

Examples

			1.715671794709...
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 11, pp. 316-319.

Crossrefs

Programs

  • PARI
    default(realprecision, 100); sumalt(k=0, sum(j=1+floor(k^2*Pi^2),floor((k+1)^2*Pi^2), sin(sqrt(j))/j)) \\ Vaclav Kotesovec, May 21 2022

Extensions

More digits from Stefano Spezia, May 21 2022
Showing 1-7 of 7 results.