A096465 Triangle (read by rows) formed by setting all entries in the first column and in the main diagonal ((i,i) entries) to 1 and the rest of the entries by the recursion T(n, k) = T(n-1, k) + T(n, k-1).
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 9, 1, 1, 5, 13, 22, 23, 1, 1, 6, 19, 41, 64, 65, 1, 1, 7, 26, 67, 131, 196, 197, 1, 1, 8, 34, 101, 232, 428, 625, 626, 1, 1, 9, 43, 144, 376, 804, 1429, 2055, 2056, 1, 1, 10, 53, 197, 573, 1377, 2806, 4861, 6917, 6918, 1, 1, 11, 64, 261, 834, 2211, 5017, 9878, 16795, 23713, 23714, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, 3, 4, 1; 1, 4, 8, 9, 1; 1, 5, 13, 22, 23, 1; 1, 6, 19, 41, 64, 65, 1; 1, 7, 26, 67, 131, 196, 197, 1;
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
a096465 n k = a096465_tabl !! n !! k a096465_row n = a096465_tabl !! n a096465_tabl = map reverse a091491_tabl -- Reinhard Zumkeller, Jul 12 2012
-
Magma
A096465:= func< n,k | k eq n select 1 else (n-k)*(&+[Binomial(n+k-2*j, n-j)/(n+k-2*j): j in [0..k]]) >; [A096465(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 30 2021
-
Maple
A096465:= (n,k)-> `if`(k=n, 1, (n-k)*add(binomial(n+k-2*j, n-j)/(n+k-2*j), j=0..k)); seq(seq(A096465(n,k), k=0..n), n=0..12) # G. C. Greubel, Apr 30 2021
-
Mathematica
T[, 0]= 1; T[n, n_]= 1; T[n_, m_]:= T[n, m]= T[n-1, m] + T[n, m-1]; T[n_, m_] /; n < 0 || m > n = 0; Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* Jean-François Alcover, Dec 17 2012 *)
-
Sage
def A096465(n,k): return 1 if (k==n) else (n-k)*sum( binomial(n+k-2*j, n-j)/(n+k-2*j) for j in (0..k)) flatten([[A096465(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021
Formula
From G. C. Greubel, Apr 30 2021: (Start)
T(n, k) = (n-k) * Sum_{j=0..k} binomial(n+k-2*j, n-j)/(n+k-2*j) with T(n,n) = 1.
T(n, k) = A091491(n, n-k).
Extensions
Offset changed by Reinhard Zumkeller, Jul 12 2012
Comments