A096502 a(n) = k is the smallest exponent k such that 2^k - (2n+1) is a prime number, or 0 if no such k exists.
2, 3, 3, 39, 4, 4, 4, 5, 6, 5, 5, 6, 5, 5, 5, 7, 6, 6, 11, 7, 6, 29, 6, 6, 7, 6, 6, 7, 6, 6, 6, 8, 8, 7, 7, 10, 9, 7, 8, 9, 7, 8, 7, 7, 8, 7, 8, 10, 7, 7, 26, 9, 7, 8, 7, 7, 10, 7, 7, 8, 7, 7, 7, 47, 8, 14, 9, 11, 10, 9, 10, 8, 9, 8, 8, 31, 8, 8, 15, 8, 10, 9
Offset: 0
Examples
a(0)=A000043(1)=2, a(1)=A050414(1)=3, a(2)=A059608(1)=3, a(3)=A059609(1)=39. For n=110 and n=111 even these smallest exponents are rather large: a(110)=714, a(111)=261 which mean that 2^714-221 and 2^261-223 are the least corresponding prime numbers.
Links
- T. D. Noe, Table of n, a(n) for n = 0..934
- F. Firoozbakht, M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
Programs
-
Mathematica
Table[k = 1; While[2^k < n || ! PrimeQ[2^k - n], k++]; k, {n, 1, 1869, 2}] (* T. D. Noe, Mar 18 2013 *)
-
PARI
A096502(n,k)={ k || k=log(n)\log(2)+1; n=2*n+1; while( !ispseudoprime(2^k++-n),);k } /* will take a long time for n=935... */ - M. F. Hasler, Apr 07 2008
Comments