A096822 Smallest primes of form p = 2^x-(2n-1) where x=A096502(n), the least exponent providing this kind of prime.
3, 5, 3, 549755813881, 7, 5, 3, 17, 47, 13, 11, 41, 7, 5, 3, 97, 31, 29, 2011, 89, 23, 536870869, 19, 17, 79, 13, 11, 73, 7, 5, 3, 193, 191, 61, 59, 953, 439, 53, 179, 433, 47, 173, 43, 41, 167, 37, 163, 929, 31, 29, 67108763, 409, 23, 149, 19, 17, 911, 13, 11, 137
Offset: 1
Keywords
Examples
a(1) = 3 is the first Mersenne prime; a(64) = 2^47 - 127 = 140737488355201, where 47 = A096502(64), 127 = 2*64 - 1.
Links
- T. D. Noe, Table of n, a(n) for n = 1..935
Crossrefs
Cf. A096502.
Programs
-
Mathematica
f[n_]:=Module[{lst={},exp=Ceiling[Log[2,1+n]]},While[!PrimeQ[2^exp-n],exp++]; AppendTo[lst,2^exp-n]]; Flatten[f/@Range[1,1001,2]] (* Ivan N. Ianakiev, Mar 08 2016 *)
Comments