A096550 Consecutive internal states of the IMSL pseudo-random number generator RNUN when started with ISEED=1.
1, 16807, 282475249, 1622650073, 984943658, 1144108930, 470211272, 101027544, 1457850878, 1458777923, 2007237709, 823564440, 1115438165, 1784484492, 74243042, 114807987, 1137522503, 1441282327, 16531729, 823378840, 143542612, 896544303, 1474833169, 1264817709, 1998097157
Offset: 1
References
- D. W. Hutchinson, A new uniform pseudo-random number generator. Comm, ACM 9, No. 6, 432-433, 1966.
- D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Eric M. Schmidt)
- D. Y. Downham and F. D. K. Roberts, Multiplicative congruential pseudo-random number generators. The Computer Journal, Volume 10, Issue 1, 74-77.
- George S. Fishman and Louis R. Moore, A Statistical Evaluation of Multiplicative Congruential Random Number Generators with Modulus 2^31-1, J. American Statistical Assoc., 77, 377 (1982), 129-136.
- Pierre L'Ecuyer, Efficient and portable combined random number generators, C ACM, 31, 6 (1988), 742-749 and 774.
- Pierre L'Ecuyer, Software for Uniform Random Number Generation: Distinguishing the Good and the Bad. Proceedings of the 2001 Winter Simulation Conference, IEEE Press, Dec. 2001, 95-105.
- P. A. W. Lewis, A. S. Goodman and J. M. Miller, A pseudo-random number generator for the System/360, IBM Systems Journal, Volume 8 Issue 2, 136-146, 1969.
- Stephen K. Park and Keith. W. Miller, Random Number Generators: Good Ones are Hard to Find, Communications of the ACM, Volume 31, Number 10 (October, 1988), 1192-1201.
- B. D. Ripley, Computer Generation of Random Variables: A Tutorial, International Statistical Review, 51 (1983), 301-309.
- B. D. Ripley, Thoughts on pseudorandom number generators, J of Computational and Applied Mathematics, 31, 1 (1990), 153-163.
- Index entries for sequences related to pseudo-random numbers.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(16807 *a(n-1), 2147483647)) end: seq(a(n), n=1..30); # Alois P. Heinz, Jun 10 2014
-
Mathematica
NestList[Mod[#*16807, 2^31 - 1] &, 1, 50] (* Paolo Xausa, Aug 29 2024 *)
-
PARI
A096550(n)=lift(Mod(16807,1<<31-1)^(n-1)) \\ M. F. Hasler, May 14 2015
Formula
a(1)=1, a(n) = 7^5 * a(n-1) mod (2^31-1). The sequence is periodic with period length 2^31-2.
Comments