A121342 Composite numbers that are a concatenation of their distinct prime divisors in some order.
735, 3792, 1341275, 13115375, 22940075, 29373375, 71624133, 311997175, 319953792, 1019127375, 1147983375, 1734009275, 5581625072, 7350032375, 17370159615, 33061224492, 103375535837, 171167303912, 319383665913, 533671737975, 2118067737975, 3111368374257
Offset: 1
Examples
For example: 735 = 3*5*7^2 and 3792 = 2^4*3*79.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..30
Programs
-
Mathematica
fQ[n_] := !PrimeQ@n && MemberQ[ FromDigits /@ (Flatten@# & /@ IntegerDigits[ Permutations[ First /@ FactorInteger@n]]), n]; Do[ If[fQ@n, Print@n], {n, 10^7/4}] (* Robert G. Wilson v, Sep 02 2006 *)
-
PARI
isok(n) = {if (isprime(n), return (0)); my(vp = factor(n)[,1], nb = #vp); for (i=0, nb!-1, my(vperm = numtoperm(nb, i), s = ""); for (i=1, #vperm, s = concat(s, vp[vperm[i]]);); if (eval(s) == n, return (1));); return (0);} \\ Michel Marcus, Feb 19 2019
Extensions
a(14) from Emmanuel Vantieghem, Nov 30 2016
Missing term 5581625072=5581||62507||2 inserted by Deron Stewart, Feb 15 2019
a(16)-a(22) from Giovanni Resta, Mar 04 2019
Comments