A102521 Decimal expansion of value of Ahmed's 2nd integral.
5, 9, 0, 4, 8, 9, 2, 7, 0, 8, 8, 6, 3, 8, 5, 0, 7, 5, 1, 5, 9, 2, 9, 8, 1, 3, 9, 5, 7, 1, 5, 6, 8, 4, 6, 3, 5, 4, 6, 5, 1, 3, 3, 6, 1, 3, 5, 5, 6, 3, 9, 3, 4, 8, 8, 6, 1, 9, 0, 6, 8, 8, 8, 8, 2, 6, 6, 5, 8, 2, 2, 0, 4, 4, 8, 8, 6, 1, 8, 0, 2, 0, 2, 9, 3, 6, 0, 0, 9, 5, 5, 9, 5, 2, 2, 5, 4, 3, 5, 3, 4, 1
Offset: 1
Examples
0.590489270886385075159298139571568463546513361355639...
References
- Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, 2004, p. 20.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Eric Weisstein's World of Mathematics, Ahmed's Integral
Programs
-
Mathematica
RealDigits[Pi/4 - Pi/Sqrt[2] + (3*ArcTan[Sqrt[2]])/Sqrt[2], 10, 50][[1]] (* G. C. Greubel, Jun 02 2017 *)
-
PARI
Pi/4 - Pi/sqrt(2) + (3*atan(sqrt(2)))/sqrt(2) \\ G. C. Greubel, Jun 02 2017
Formula
Equals Pi/4 - Pi/sqrt(2) + (3*arctan(sqrt(2)))/sqrt(2).
Equals Integral_{x=0..1} arctan(sqrt(x^2 + 1))/(x^2 + 1)^(3/2) dx (Borwein et al., 2004). - Amiram Eldar, Aug 17 2020