cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096615 Decimal expansion of 5 Pi^2/96.

Original entry on oeis.org

5, 1, 4, 0, 4, 1, 8, 9, 5, 8, 9, 0, 0, 7, 0, 7, 6, 1, 3, 9, 7, 6, 2, 9, 7, 3, 9, 5, 7, 6, 8, 8, 2, 8, 7, 1, 6, 3, 0, 9, 2, 1, 8, 4, 4, 1, 2, 7, 1, 2, 4, 5, 1, 1, 7, 9, 2, 3, 6, 1, 9, 4, 6, 6, 7, 8, 1, 2, 7, 3, 3, 4, 5, 0, 1, 0, 0, 0, 2, 7, 3, 0, 7, 3, 0, 0, 9, 0, 3, 1, 4, 4, 3, 6, 7, 4, 5, 9, 5, 4, 0, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jun 30 2004

Keywords

Examples

			0.514041895...
		

References

  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See pp. 17-20.

Crossrefs

Programs

  • Mathematica
    RealDigits[5 Pi^2/96, 10 , 100][[1]] (* Amiram Eldar, Aug 17 2020 *)

Formula

From Amiram Eldar, Aug 17 2020: (Start)
Equals Integral_{x=0..1} arctan(sqrt(x^2 + 2))/(sqrt(x^2 + 2) * (x^2 + 1)) dx (Ahmed, 2001; Borwein et al., 2004).
Equals (1/10) * Integral_{x=1..oo} log(x)/(x^5 + x) dx. (End)

A102521 Decimal expansion of value of Ahmed's 2nd integral.

Original entry on oeis.org

5, 9, 0, 4, 8, 9, 2, 7, 0, 8, 8, 6, 3, 8, 5, 0, 7, 5, 1, 5, 9, 2, 9, 8, 1, 3, 9, 5, 7, 1, 5, 6, 8, 4, 6, 3, 5, 4, 6, 5, 1, 3, 3, 6, 1, 3, 5, 5, 6, 3, 9, 3, 4, 8, 8, 6, 1, 9, 0, 6, 8, 8, 8, 8, 2, 6, 6, 5, 8, 2, 2, 0, 4, 4, 8, 8, 6, 1, 8, 0, 2, 0, 2, 9, 3, 6, 0, 0, 9, 5, 5, 9, 5, 2, 2, 5, 4, 3, 5, 3, 4, 1
Offset: 1

Views

Author

Eric W. Weisstein, Jan 14 2005

Keywords

Examples

			0.590489270886385075159298139571568463546513361355639...
		

References

  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, 2004, p. 20.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/4 - Pi/Sqrt[2] + (3*ArcTan[Sqrt[2]])/Sqrt[2], 10, 50][[1]] (* G. C. Greubel, Jun 02 2017 *)
  • PARI
    Pi/4 - Pi/sqrt(2) + (3*atan(sqrt(2)))/sqrt(2) \\ G. C. Greubel, Jun 02 2017

Formula

Equals Pi/4 - Pi/sqrt(2) + (3*arctan(sqrt(2)))/sqrt(2).
Equals Integral_{x=0..1} arctan(sqrt(x^2 + 1))/(x^2 + 1)^(3/2) dx (Borwein et al., 2004). - Amiram Eldar, Aug 17 2020
Showing 1-2 of 2 results.