cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096624 Numerators of the Riemann prime counting function.

Original entry on oeis.org

0, 1, 2, 5, 7, 7, 9, 29, 16, 16, 19, 19, 22, 22, 22, 91, 103, 103, 115, 115, 115, 115, 127, 127, 133, 133, 137, 137, 149, 149, 161, 817, 817, 817, 817, 817, 877, 877, 877, 877, 937, 937, 997, 997, 997, 997, 1057, 1057, 1087, 1087, 1087, 1087, 1147, 1147, 1147
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Examples

			0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 167.

Crossrefs

Cf. A096625.

Programs

  • Mathematica
    Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Numerator (* Eric W. Weisstein, Jan 09 2019 *)
  • PARI
    a(n) = numerator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
    
  • PARI
    a(n) = numerator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019

Formula

Let Sk{f(k)}= Sum_{k>=2}f(k), then the g.f. of A096624/A096625 can be written as
(1/1)*Sa{(x^a)/(1-x)} - (1/2)*Sa{ Sb{ (x^(a*b))/(1-x)}} + (1/3)*Sa{ Sb{ Sc{ (x^(a*b*c))/(1-x)}}} - (1/4)*Sa{ Sb{ Sc{ Sd{ (x^(a*b*c*d))/(1-x)}}}} + ... . - Mats Granvik, Apr 06 2011
a(n)/A096625(n) = Sum_{p prime <= n} HarmonicNumber(floor(log_p n)). - Ammar Khatab, Jan 25 2025