A096624 Numerators of the Riemann prime counting function.
0, 1, 2, 5, 7, 7, 9, 29, 16, 16, 19, 19, 22, 22, 22, 91, 103, 103, 115, 115, 115, 115, 127, 127, 133, 133, 137, 137, 149, 149, 161, 817, 817, 817, 817, 817, 877, 877, 877, 877, 937, 937, 997, 997, 997, 997, 1057, 1057, 1087, 1087, 1087, 1087, 1147, 1147, 1147
Offset: 1
Examples
0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 167.
Links
- Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
Crossrefs
Cf. A096625.
Programs
-
Mathematica
Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Numerator (* Eric W. Weisstein, Jan 09 2019 *)
-
PARI
a(n) = numerator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
-
PARI
a(n) = numerator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019
Formula
(1/1)*Sa{(x^a)/(1-x)} - (1/2)*Sa{ Sb{ (x^(a*b))/(1-x)}} + (1/3)*Sa{ Sb{ Sc{ (x^(a*b*c))/(1-x)}}} - (1/4)*Sa{ Sb{ Sc{ Sd{ (x^(a*b*c*d))/(1-x)}}}} + ... . - Mats Granvik, Apr 06 2011
a(n)/A096625(n) = Sum_{p prime <= n} HarmonicNumber(floor(log_p n)). - Ammar Khatab, Jan 25 2025