cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052434 Nearest integer to R(n) - pi(n), where R(x) is the Riemann prime counting function.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0
Offset: 2

Views

Author

Keywords

Comments

The Riemann prime counting function R(n) = Sum_{prime powers p^k <= n} 1/k = A096624(n)/A096625(n). - N. J. A. Sloane, Feb 07 2023

Examples

			a(13) = 0 because R(13) = 5.504 and pi(13) = 6.
		

Crossrefs

Programs

Extensions

Corrected 6 terms, a(2), a(7), a(10), a(13), a(20) and a(48). Each was made 1 larger. Also gave an example for a(13) and a program for computing a(n). - Harry J. Smith, Dec 31 2008

A096625 Denominators of the Riemann prime counting function.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 3, 3, 3, 3, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Examples

			0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 167.

Crossrefs

Cf. A096624.

Programs

  • Mathematica
    Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Denominator (* Eric W. Weisstein, Jan 09 2019 *)
  • PARI
    a(n) = denominator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
    
  • PARI
    a(n) = denominator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019

A096623 Decimal expansion of Integral_{t>=2} 1/(t*log(t)(t^2-1)) dt.

Original entry on oeis.org

1, 4, 0, 0, 1, 0, 1, 0, 1, 1, 4, 3, 2, 8, 6, 9, 2, 6, 6, 8, 6, 9, 1, 7, 3, 0, 5, 2, 3, 4, 2, 9, 9, 7, 3, 3, 1, 7, 7, 5, 2, 7, 9, 2, 8, 1, 2, 7, 0, 6, 5, 8, 2, 8, 9, 4, 8, 9, 4, 6, 8, 7, 4, 3, 1, 1, 3, 0, 4, 9, 1, 4, 9, 9, 5, 1, 6, 1, 3, 6, 1, 0, 2, 7, 6, 0, 2, 6, 5, 3, 2, 0, 6, 4, 8, 6, 6, 6, 9, 6, 3, 4, 3, 4, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Comments

Maximum value of the integral in the Riemann prime counting function.

Examples

			0.1400101011432869266869173052342997331775279281270658289489468743113049149...
		

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, 2003, pp. 328-329.
  • Bernhard Riemann, On the Number of Prime Numbers less than a Given Quantity, 1859.

Crossrefs

Programs

  • Maple
    evalf(Integrate(1/(x*log(x)*(x^2-1)), x = 2..infinity), 120); # Vaclav Kotesovec, Feb 13 2019
  • Mathematica
    RealDigits[ NIntegrate[1/(t Log[t](t^2 - 1)), {t, 2, Infinity}, MaxRecursion -> 8, AccuracyGoal -> 115, WorkingPrecision -> 128]][[1]] (* Robert G. Wilson v, Jul 05 2004 *)
  • PARI
    default(realprecision, 120); intnum(x=2, oo, 1/(x*log(x)*(x^2 - 1))) \\ Vaclav Kotesovec, Feb 13 2019

A322713 a(n) = numerator of the Riemann prime counting function for 10^n.

Original entry on oeis.org

0, 16, 428, 445273, 56175529, 991892879, 18296822833013, 3559637526370229, 6427431691337929, 14804074778750628149, 9387415960571046321167, 594663752918349842404169, 200936708396848319452718531, 296345083061712053722716462103, 30189234512048649753828116713823
Offset: 0

Views

Author

Daniel Suteu, Dec 24 2018

Keywords

Examples

			0, 16/3, 428/15, 445273/2520, 56175529/45045, 991892879/102960, 18296822833013/232792560, ...
		

Crossrefs

The corresponding denominators are A322714.

Programs

  • PARI
    a(n) = numerator(sum(k=1, logint(10^n, 2), primepi(sqrtnint(10^n, k))/k));

Formula

a(n) = A096624(10^n).
a(n) = numerator of Sum_{k=1..floor(log_2(10^n))} pi(floor(10^(n/k)))/k, where pi(x) is the prime counting function A000720.
Showing 1-4 of 4 results.