A096650 Indices of prime Pell numbers.
2, 3, 5, 11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181, 191, 523, 929, 1217, 1301, 1361, 2087, 2273, 2393, 8093, 13339, 14033, 23747, 28183, 34429, 36749, 90197
Offset: 1
Examples
P(11)=5741, which is prime.
Links
- Steve Fan and Paul Pollack, Extremal elasticity of quadratic orders, arXiv:2503.07801 [math.NT], 2025. See p. 17.
- J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, Paper C027, Electronic Proceedings of the Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics, Orlando, Florida, March 22-25, 2012. See p. 262. - _N. J. A. Sloane_, Mar 27 2014
- Eric Weisstein's World of Mathematics, Pell Number.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes .
Programs
-
Maple
Pell:= gfun:-rectoproc( {a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) + a(n-2)},a(n), remember): select(t -> isprime(t) and isprime(Pell(t)), [2, seq(2*i+1, i=1..2000)]); # Robert Israel, Aug 28 2015
-
Mathematica
lst={}; a=0; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst (* T. D. Noe, Aug 17 2004 *) Flatten@ Position[#, p_ /; PrimeQ@ p] - 1 &@ CoefficientList[Series[x/(1 - 2 x - x^2), {x, 0, 5000}], x] (* Michael De Vlieger, Apr 29 2016, after Stefan Steinerberger at A000129 *)
Comments