cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096650 Indices of prime Pell numbers.

Original entry on oeis.org

2, 3, 5, 11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181, 191, 523, 929, 1217, 1301, 1361, 2087, 2273, 2393, 8093, 13339, 14033, 23747, 28183, 34429, 36749, 90197
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Aug 15 2004

Keywords

Comments

For a Pell number to be prime, the index must be prime. The indices greater than 523 yield probable primes. No others less than 100000. - T. D. Noe, Sep 13 2004
n divides m if and only if A000129(n) divides A000129(m). This is the reason of the fact that this sequence is a subsequence of A000040. For complement of this sequence see A270387. - Altug Alkan, Apr 29 2016

Examples

			P(11)=5741, which is prime.
		

Crossrefs

Cf. A000129 (Pell numbers), A086383 (prime Pell numbers), A270387.

Programs

  • Maple
    Pell:= gfun:-rectoproc( {a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) + a(n-2)},a(n), remember):
    select(t -> isprime(t) and isprime(Pell(t)), [2, seq(2*i+1, i=1..2000)]); # Robert Israel, Aug 28 2015
  • Mathematica
    lst={}; a=0; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst (* T. D. Noe, Aug 17 2004 *)
    Flatten@ Position[#, p_ /; PrimeQ@ p] - 1 &@ CoefficientList[Series[x/(1 - 2 x - x^2), {x, 0, 5000}], x] (* Michael De Vlieger, Apr 29 2016, after Stefan Steinerberger at A000129 *)

Extensions

More terms from T. D. Noe, Aug 17 2004
Further terms from T. D. Noe, Sep 13 2004