A096698 Balanced primes of order six.
71, 211, 397, 409, 1487, 1559, 2281, 4397, 4937, 5347, 5857, 7577, 10399, 11369, 12583, 14843, 19391, 21739, 21787, 22067, 22469, 23789, 25639, 27329, 29537, 29867, 30197, 30911, 33347, 33931, 34267, 35099, 36131, 36691, 37549, 38671
Offset: 1
Keywords
Examples
71 is a member because 71 = (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101)/13.
Links
- Aaron Toponce, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
GAP
P:=Filtered([1..90000],IsPrime);; b:=6;; a:=List(Filtered(List([0..5000],k->List([b+1..3*b+1],j->P[j-b+k])),i->Sum(i)/(2*b+1)=i[b+1]),m->m[b+1]); # Muniru A Asiru, Feb 15 2018
-
Mathematica
Transpose[ Select[ Partition[ Prime[ Range[5000]], 13, 1], #[[7]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[8]] + #[[9]] + #[[10]] + #[[11]] + #[[12]] + #[[13]])/12 &]][[7]] Transpose[Select[Partition[Prime[Range[5000]],13,1],Total[#]/13==#[[7]]&]][[7]] (* Harvey P. Dale, Feb 25 2011 *)
-
PARI
isok(p) = {if (isprime(p), k = primepi(p); if (k >6, sum(i=k-6, k+6, prime(i)) == 13*p;););} \\ Michel Marcus, Mar 07 2018