cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096698 Balanced primes of order six.

Original entry on oeis.org

71, 211, 397, 409, 1487, 1559, 2281, 4397, 4937, 5347, 5857, 7577, 10399, 11369, 12583, 14843, 19391, 21739, 21787, 22067, 22469, 23789, 25639, 27329, 29537, 29867, 30197, 30911, 33347, 33931, 34267, 35099, 36131, 36691, 37549, 38671
Offset: 1

Views

Author

Robert G. Wilson v, Jun 26 2004

Keywords

Examples

			71 is a member because 71 = (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101)/13.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..90000],IsPrime);;
    b:=6;;
    a:=List(Filtered(List([0..5000],k->List([b+1..3*b+1],j->P[j-b+k])),i->Sum(i)/(2*b+1)=i[b+1]),m->m[b+1]); # Muniru A Asiru, Feb 15 2018
    
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[5000]], 13, 1], #[[7]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[8]] + #[[9]] + #[[10]] + #[[11]] + #[[12]] + #[[13]])/12 &]][[7]]
    Transpose[Select[Partition[Prime[Range[5000]],13,1],Total[#]/13==#[[7]]&]][[7]]  (* Harvey P. Dale, Feb 25 2011 *)
  • PARI
    isok(p) = {if (isprime(p), k = primepi(p); if (k >6, sum(i=k-6, k+6, prime(i)) == 13*p;););} \\ Michel Marcus, Mar 07 2018