A096701 Balanced primes of order nine.
983, 2351, 4019, 4093, 4957, 8731, 10009, 10211, 10271, 11549, 11593, 12809, 13831, 17971, 21647, 25633, 30313, 32411, 33911, 34283, 37277, 37511, 38711, 39749, 41617, 41737, 42299, 46643, 48809, 49121, 49451, 51599, 53381, 54541, 54559
Offset: 1
Keywords
Examples
983 is a member because 983 = (919 + 929 + 937 + 941 + 947 + 953 + 967 + 971 + 977 + 983 + 991 + 997 + 1009 + 1013 + 1019 + 1021 + 1031 + 1033 + 1039)/19 = 18677/19.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
GAP
P:=Filtered([1..80000],IsPrime);; a:=List(Filtered(List([0..6000],k->List([10..28],j->P[j-9+k])),i-> Sum(i)/19=i[10]),m->m[10]); # Muniru A Asiru, Feb 14 2018
-
Mathematica
Transpose[ Select[ Partition[ Prime[ Range[7500]], 19, 1], #[[10]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[7]] + #[[8]] + #[[9]] + #[[11]] + #[[12]] + #[[13]] + #[[14]] + #[[15]] + #[[16]] + #[[17]] + #[[18]] + #[[19]])/18 &]][[10]] #[[10]] & /@ Select[Partition[Prime[Range[7500]], 19, 1], #[[10]] == Mean[#] &] (* Zak Seidov, Mar 01 2017 *)
-
PARI
isok(p) = {if (isprime(p), k = primepi(p); if (k > 9, sum(i=k-9, k+9, prime(i)) == 19*p;););} \\ Michel Marcus, Mar 07 2018