cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096713 Irregular triangle T(n,k) of nonzero coefficients of the modified Hermite polynomials (n >= 0 and 0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, -1, 1, -3, 1, 3, -6, 1, 15, -10, 1, -15, 45, -15, 1, -105, 105, -21, 1, 105, -420, 210, -28, 1, 945, -1260, 378, -36, 1, -945, 4725, -3150, 630, -45, 1, -10395, 17325, -6930, 990, -55, 1, 10395, -62370, 51975, -13860, 1485, -66, 1, 135135, -270270, 135135, -25740, 2145, -78, 1
Offset: 0

Views

Author

Eric W. Weisstein, Jul 04 2004

Keywords

Comments

Triangle of nonzero coefficients of matching polynomial of complete graph of order n.
Row sums of absolute values produce A000085 (number of involutions). - Wouter Meeussen, Mar 12 2008
Row n has floor(n/2) + 1 nonzero coefficients. - Robert Israel, Dec 23 2015
Also the nonzero terms of the Bell matrix generated by the sequence [-1,1,0,0,0, ...] read by rows (see second Sage program). For the definition of the Bell matrix see A264428. - Peter Luschny, Jan 20 2016
From Petros Hadjicostas, Oct 28 2019: (Start)
The formulas about the p.d.f. of the standard normal distribution were proved, for example, by Charlier (1905, pp. 13-15), but they were well-known for many years before him. Charlier (1905) has generalized these results to other measures whose n-th moment (around 0) exists for each integer n >= 0.
Different forms (with or without signs) of these coefficients T(n,k) appear in other arrays as well; e.g., see A049403, A104556, A122848, A130757 (odd rows only), etc.
(End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
    1;
    1;
   -1,     1;
   -3,     1;
    3,    -6,    1;
   15,    -10,   1;
  -15,     45, -15,   1;
  -105,   105, -21,   1;
   105,  -420, 210, -28, 1;
   945, -1260, 378, -36, 1;
   ...
The corresponding modified Hermite polynomials are as follows
He_0(x) = 1, He_1(x) = x,
He_2(x) = -1 + x^2, He_3(x) = -3*x + x^3,
He_4(x) = 3 - 6*x^2 + x^4, He_5(x) = 15*x - 10*x^3 + x^5, ...
[Modified by _Petros Hadjicostas_, Oct 28 2019]
		

References

  • C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

Crossrefs

Programs

  • Maple
    A:= NULL:
    for n from 0 to 20 do
      HH:= expand(orthopoly[H](n,x/sqrt(2))/2^(n/2));
      C:= subs(0=NULL, [seq(coeff(HH,x,j),j=0..n)]);
      A:= A, op(C);
    od:
    A; #  Robert Israel, Dec 23 2015
    # Alternatively:
    A096713 := (n, k) -> `if`(2*kA096713(n, k), k=0..n), n=0..13); # Peter Luschny, Dec 24 2015
  • Mathematica
    Table[CoefficientList[HermiteH[n,x/Sqrt[2] ]/2^(n/2),x],{n,0,25}] (* Wouter Meeussen, Mar 12 2008 *)
  • PARI
    T(n,k)=if(k<0||2*k>n, 0, (-1)^(n\2-k)*n!/(n\2-k)!/(n%2+2*k)!/2^(n\2-k)) /* Michael Somos, Jun 04 2005 */
    
  • Python
    from sympy import hermite, Poly, sqrt
    def a(n): return Poly(hermite(n, x/sqrt(2))/2**(n/2), x).coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
  • Sage
    from sage.functions.hypergeometric import closed_form
    def A096713_row(n):
        R. = ZZ[]
        h = hypergeometric([-n/2,(1-n)/2], [], -2*z)
        T = R(closed_form(h)).coefficients()
        return T[::-1]
    for n in range(13): A096713_row(n) # Peter Luschny, Aug 21 2014
    
  • Sage
    # uses[bell_transform from A264428]
    def bell_zero_filter(generator, dim):
        G = [generator(k) for k in srange(dim)]
        row = lambda n: bell_transform(n, G)
        F = [filter(lambda r: r != 0, R) for R in [row(n) for n in srange(dim)]]
        return [i for f in F for i in f]
    print(bell_zero_filter(lambda n: [1,-1][n] if n < 2 else 0, 14)) # Peter Luschny, Jan 20 2016
    

Formula

G.f.: HermiteH(n,x/sqrt(2))/2^(n/2). - Wouter Meeussen, Mar 12 2008
From Robert Israel, Dec 23 2015: (Start)
T(2*m, k) = (-1)^(m+k)*(2*m)!*2^(k-m)/((m-k)!*(2*k)!), k = 0..m.
T(2*m+1, k) = (-1)^(m+k)*(2*m+1)!*2^(k-m)/((m-k)!*(2*k+1)!), k = 0..m. (End)
From Petros Hadjicostas, Oct 28 2019: (Start)
Let He_n(x) be the n-th modified Hermite polynomial (see the references above); i.e., let He_n(x) = Sum_{k = 0..m} T(2*m, k)*x^(2*k) when n = 2*m and He_n(x) = Sum_{k = 0..m} T(2*m+1, k)*x^(2*k+1) when n = 2*m+1.
Let phi(x) = (1/sqrt(2*Pi)) * exp(-x^2/2) be the p.d.f. of a standard normal distribution. Then He_n(x) = (-1)^n * (1/phi(x)) * d^n(phi(x))/dx^n for n >= 0.
We have He_n(x) = x*He_{n-1}(x) - (n-1)*He_{n-2}(x) for n >= 2. (End)