A096713 Irregular triangle T(n,k) of nonzero coefficients of the modified Hermite polynomials (n >= 0 and 0 <= k <= floor(n/2)).
1, 1, -1, 1, -3, 1, 3, -6, 1, 15, -10, 1, -15, 45, -15, 1, -105, 105, -21, 1, 105, -420, 210, -28, 1, 945, -1260, 378, -36, 1, -945, 4725, -3150, 630, -45, 1, -10395, 17325, -6930, 990, -55, 1, 10395, -62370, 51975, -13860, 1485, -66, 1, 135135, -270270, 135135, -25740, 2145, -78, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows: 1; 1; -1, 1; -3, 1; 3, -6, 1; 15, -10, 1; -15, 45, -15, 1; -105, 105, -21, 1; 105, -420, 210, -28, 1; 945, -1260, 378, -36, 1; ... The corresponding modified Hermite polynomials are as follows He_0(x) = 1, He_1(x) = x, He_2(x) = -1 + x^2, He_3(x) = -3*x + x^3, He_4(x) = 3 - 6*x^2 + x^4, He_5(x) = 15*x - 10*x^3 + x^5, ... [Modified by _Petros Hadjicostas_, Oct 28 2019]
References
- C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
Links
- Robert Israel, Table of n, a(n) for n = 0..10099 (rows 0 to 199, flattened)
- Carl V. L. Charlier, Über die Darstellung willkürlicher Funktionen, Arkiv För Matematik, Astronomi Och Fysik, Band 2, No. 20 (Meddelande från Lunds Astronomiska Observatorium, Series I, No. 27), 1905, 1-35. [Accessible only in the USA via the HathiTrust Digital Library.]
- Nicolas Loizeau, Berislav Buča, and Dries Sels, Opening Krylov space to access all-time dynamics via dynamical symmetries, arXiv:2503.07403 [quant-ph], 2025. See p. 9.
- Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Eric Weisstein's World of Mathematics, Matching Polynomial. - _Eric W. Weisstein_, Sep 27 2008
Programs
-
Maple
A:= NULL: for n from 0 to 20 do HH:= expand(orthopoly[H](n,x/sqrt(2))/2^(n/2)); C:= subs(0=NULL, [seq(coeff(HH,x,j),j=0..n)]); A:= A, op(C); od: A; # Robert Israel, Dec 23 2015 # Alternatively: A096713 := (n, k) -> `if`(2*k
A096713(n, k), k=0..n), n=0..13); # Peter Luschny, Dec 24 2015 -
Mathematica
Table[CoefficientList[HermiteH[n,x/Sqrt[2] ]/2^(n/2),x],{n,0,25}] (* Wouter Meeussen, Mar 12 2008 *)
-
PARI
T(n,k)=if(k<0||2*k>n, 0, (-1)^(n\2-k)*n!/(n\2-k)!/(n%2+2*k)!/2^(n\2-k)) /* Michael Somos, Jun 04 2005 */
-
Python
from sympy import hermite, Poly, sqrt def a(n): return Poly(hermite(n, x/sqrt(2))/2**(n/2), x).coeffs()[::-1] for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
-
Sage
from sage.functions.hypergeometric import closed_form def A096713_row(n): R.
= ZZ[] h = hypergeometric([-n/2,(1-n)/2], [], -2*z) T = R(closed_form(h)).coefficients() return T[::-1] for n in range(13): A096713_row(n) # Peter Luschny, Aug 21 2014 -
Sage
# uses[bell_transform from A264428] def bell_zero_filter(generator, dim): G = [generator(k) for k in srange(dim)] row = lambda n: bell_transform(n, G) F = [filter(lambda r: r != 0, R) for R in [row(n) for n in srange(dim)]] return [i for f in F for i in f] print(bell_zero_filter(lambda n: [1,-1][n] if n < 2 else 0, 14)) # Peter Luschny, Jan 20 2016
Formula
G.f.: HermiteH(n,x/sqrt(2))/2^(n/2). - Wouter Meeussen, Mar 12 2008
From Robert Israel, Dec 23 2015: (Start)
T(2*m, k) = (-1)^(m+k)*(2*m)!*2^(k-m)/((m-k)!*(2*k)!), k = 0..m.
T(2*m+1, k) = (-1)^(m+k)*(2*m+1)!*2^(k-m)/((m-k)!*(2*k+1)!), k = 0..m. (End)
From Petros Hadjicostas, Oct 28 2019: (Start)
Let He_n(x) be the n-th modified Hermite polynomial (see the references above); i.e., let He_n(x) = Sum_{k = 0..m} T(2*m, k)*x^(2*k) when n = 2*m and He_n(x) = Sum_{k = 0..m} T(2*m+1, k)*x^(2*k+1) when n = 2*m+1.
Let phi(x) = (1/sqrt(2*Pi)) * exp(-x^2/2) be the p.d.f. of a standard normal distribution. Then He_n(x) = (-1)^n * (1/phi(x)) * d^n(phi(x))/dx^n for n >= 0.
We have He_n(x) = x*He_{n-1}(x) - (n-1)*He_{n-2}(x) for n >= 2. (End)
Comments