A096847 Numbers k such that A094471(k) is prime.
3, 4, 8, 36, 100, 128, 324, 400, 1296, 1600, 1936, 2116, 3364, 4356, 10404, 11236, 20736, 22500, 26244, 27556, 28900, 30976, 38416, 40000, 52900, 53824, 57600, 60516, 88804, 93636, 107584, 108900, 115600, 123904, 125316, 129600, 211600, 215296, 220900, 256036
Offset: 1
Keywords
Examples
8 is a term since 8*tau(8) - sigma(8) = 8*4 - 15 = 32 - 15 = 17 is a prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..100 from Harvey P. Dale)
Programs
-
Maple
A094471:= n -> n*numtheory:-tau(n) - numtheory:-sigma(n): select(t -> isprime(A094471(t)), 2*[3/2,$1..10^6]); # Robert Israel, Nov 11 2015
-
Mathematica
Do[s=n*DivisorSigma[0, n]-DivisorSigma[1, n]; If[PrimeQ[s], Print[{n, s}]; ta[[u]]=n; tb[[u]]=s; u=u+1], {n, 1, 1000000}]; ta Select[Range[215000],PrimeQ[# DivisorSigma[0,#]-DivisorSigma[1,#]]&] (* Harvey P. Dale, Dec 07 2021 *) q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; PrimeQ[n * Times @@ (e + 1) - Times @@ ((p^(e + 1) - 1)/(p - 1))]]; seq[lim_] := Module[{m1 = Floor[Sqrt[lim/2]], m2 = Floor[Sqrt[lim]/2]}, Join[{3}, Union[Select[2*Range[m1]^2, q], Select[4*Range[m2]^2, q]]]]; seq[220000] (* Amiram Eldar, Feb 14 2025 *)
-
PARI
isok(n) = isprime(n*numdiv(n)-sigma(n)); \\ Michel Marcus, Nov 12 2015
-
PARI
isok(k) = if(k % 2, k == 3, if(!issquare(k) && !issquare(2*k), 0, my(f = factor(k)); isprime(k * numdiv(f) - sigma(f)))); \\ Amiram Eldar, Feb 14 2025
Extensions
Name modified by Tom Edgar, Nov 12 2015
Comments