cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096847 Numbers k such that A094471(k) is prime.

Original entry on oeis.org

3, 4, 8, 36, 100, 128, 324, 400, 1296, 1600, 1936, 2116, 3364, 4356, 10404, 11236, 20736, 22500, 26244, 27556, 28900, 30976, 38416, 40000, 52900, 53824, 57600, 60516, 88804, 93636, 107584, 108900, 115600, 123904, 125316, 129600, 211600, 215296, 220900, 256036
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Comments

Old name was "Solutions to {A094471[x]=prime} that is to {x; x*tau[x]-sigma[x]=prime}."
All terms after the first are even, because A094471(n) is even if n is odd. The first term == 2 (mod 4) is a(135) = 9653618. - Robert Israel, Nov 11 2015
Except for 3, all the terms are either even squares or twice squares. - Amiram Eldar, Feb 14 2025

Examples

			8 is a term since 8*tau(8) - sigma(8) = 8*4 - 15 = 32 - 15 = 17 is a prime.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A094471, A096848.

Programs

  • Maple
    A094471:= n -> n*numtheory:-tau(n) - numtheory:-sigma(n):
    select(t -> isprime(A094471(t)), 2*[3/2,$1..10^6]); # Robert Israel, Nov 11 2015
  • Mathematica
    Do[s=n*DivisorSigma[0, n]-DivisorSigma[1, n]; If[PrimeQ[s], Print[{n, s}]; ta[[u]]=n; tb[[u]]=s; u=u+1], {n, 1, 1000000}]; ta
    Select[Range[215000],PrimeQ[# DivisorSigma[0,#]-DivisorSigma[1,#]]&] (* Harvey P. Dale, Dec 07 2021 *)
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; PrimeQ[n * Times @@ (e + 1) - Times @@ ((p^(e + 1) - 1)/(p - 1))]]; seq[lim_] := Module[{m1 = Floor[Sqrt[lim/2]], m2 = Floor[Sqrt[lim]/2]}, Join[{3}, Union[Select[2*Range[m1]^2, q], Select[4*Range[m2]^2, q]]]]; seq[220000] (* Amiram Eldar, Feb 14 2025 *)
  • PARI
    isok(n) = isprime(n*numdiv(n)-sigma(n)); \\ Michel Marcus, Nov 12 2015
    
  • PARI
    isok(k) = if(k % 2, k == 3, if(!issquare(k) && !issquare(2*k), 0, my(f = factor(k)); isprime(k * numdiv(f) - sigma(f)))); \\ Amiram Eldar, Feb 14 2025

Extensions

Name modified by Tom Edgar, Nov 12 2015