A096886 Expansion of (1+3*x)/(1-8*x^2).
1, 3, 8, 24, 64, 192, 512, 1536, 4096, 12288, 32768, 98304, 262144, 786432, 2097152, 6291456, 16777216, 50331648, 134217728, 402653184, 1073741824, 3221225472, 8589934592, 25769803776, 68719476736, 206158430208, 549755813888
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,8).
Crossrefs
Cf. A038754.
Programs
-
Mathematica
CoefficientList[Series[(1+3x)/(1-8x^2),{x,0,30}],x] (* or *) LinearRecurrence[{0,8},{1,3},30] (* Harvey P. Dale, Apr 25 2023 *)
Formula
G.f.: (1+3*x)/(1-8*x^2).
a(n) = (1 + (-1)^n)*8^floor((n+1)/2)/2 + 3*(1-(-1)^n)*8^floor(n/2)/2.
a(n) = 2^(3*n/2)*(3*sqrt(2)/8 + 1/2 - (3*sqrt(2)/8 - 1/2)*(-1)^n).
a(2n+1) = 2*a(2n) + 2*a(2n-1) + 2*a(2n-2).
a(2n) = 2*a(2n-1) + 2*a(2n-2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
Comments