A096923 Numbers n for which there are exactly two k such that n = k + (product of nonzero digits of k).
12, 14, 16, 18, 22, 26, 38, 44, 50, 55, 62, 66, 74, 80, 86, 88, 98, 104, 112, 114, 120, 122, 123, 138, 142, 144, 155, 160, 162, 166, 170, 174, 186, 188, 198, 209, 210, 212, 218, 224, 230, 237, 240, 250, 258, 261, 265, 285, 286, 294, 303, 308, 314, 316, 326, 327
Offset: 1
Examples
18 and 22 are the only two k such that k + (product of nonzero digits of k) = 26, hence 26 is a term.
Programs
-
Mathematica
knzd[n_]:=n+Times@@Select[IntegerDigits[n],#!=0&]; Sort[Transpose[ Select[ Tally[ Array[ knzd,400]],Last[#]==2&]][[1]]] (* Harvey P. Dale, Nov 05 2013 *)
-
PARI
{c=2;z=330;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922