cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096922 Numbers n for which there is a unique k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 20, 23, 24, 28, 29, 32, 33, 34, 35, 41, 42, 45, 46, 47, 54, 56, 58, 60, 65, 67, 68, 70, 75, 77, 78, 81, 85, 89, 92, 94, 95, 99, 100, 101, 106, 107, 108, 109, 111, 124, 125, 128, 129, 130, 132, 133, 135, 140, 141, 143, 145, 146, 147, 152, 154, 156, 158
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			21 is the unique k such that k + (product of nonzero digits of k) = 23, hence 23 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {200}]; Do[ a = f[n]; If[a < 200, t[[a]]++ ], {n, 200}]; Select[ Range[ 200], t[[ # ]] == 1 &] (* Robert G. Wilson v, Jul 16 2004 *)
  • PARI
    addpnd(n)=local(k,s,d);k=n;s=1;while(k>0,d=divrem(k,10);k=d[1];s=s*max(1,d[2]));n+s
    {c=1;z=160;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))}

A096347 Least number with n preimages (or immediate predecessors) under f(n) = n + (product of nonzero digits of n).

Original entry on oeis.org

1, 2, 12, 102, 116, 1098, 2072, 1014, 101134, 11014, 1011098, 1003525, 41021255, 210110985, 403130555, 481104655, 4401225555, 4811125555, 86413249555, 39011218055
Offset: 0

Views

Author

Jason Earls, Jun 29 2004

Keywords

Comments

First occurrence of k in A096972.
a(20) > 10^11. [From Donovan Johnson, Nov 22 2009]

Examples

			a(3)=102 because 102 is the least number with three direct predecessors, 66: 66+6*6 = 102, 74: 74+7*4 = 102, 101: 101+1*1 = 102.
		

References

  • P. A. Loomis, An Introduction to Digit Product Sequences (see link).

Crossrefs

Extensions

a(8) to a(11) from Klaus Brockhaus, Jul 07 2004
a(12) from Robert G. Wilson v, Jul 15 2004
a(13)-a(19) from Donovan Johnson, Nov 22 2009

A096931 Numbers n for which there are exactly ten k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

1011098, 2102125, 2411305, 2711105, 4012055, 4042055, 4086725, 4101455, 4105555, 4132755, 4310145, 6021254, 6621256, 8012765, 8013495, 8111255, 8202555, 9012405, 9302165, 10011116, 10111014, 10113255, 11011098, 12102125
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			965738, 978842, 988058, 991658, 1009397, 1010874, 1010936, 1010972, 1011058 and 1011082 are the only ten k such that k + (product of nonzero digits of k) = 1011098, hence 1011098 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {12500000}]; Do[ a = f[n]; If[a < 12500000, t[[a]]++ ], {n, 12500000}]; Do[ If[ t[[n]] == 10, Print[n]], {n, 12500000}] (* Robert G. Wilson v, Jul 16 2004 *)
  • PARI
    {c=10;z=3000000;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

Extensions

More terms from Robert G. Wilson v, Jul 16 2004

A096924 Numbers n for which there are exactly three k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

102, 110, 118, 126, 134, 150, 180, 202, 216, 225, 234, 260, 272, 312, 338, 366, 404, 414, 420, 455, 456, 512, 534, 542, 564, 576, 586, 635, 645, 712, 734, 750, 786, 808, 818, 827, 837, 840, 894, 920, 939, 970, 980, 1018, 1020, 1034, 1042, 1072, 1074, 1075
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			76, 109 and 114 are the only three k such that k + (product of nonzero digits of k) = 118, hence 118 is a term.
		

Crossrefs

Programs

  • PARI
    {c=3;z=1100;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

A063425 Unattainable numbers: integers not expressible as k + product of nonzero digits of k (A063114).

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 19, 21, 25, 27, 30, 31, 36, 37, 39, 40, 43, 48, 49, 51, 52, 53, 57, 59, 61, 63, 64, 69, 71, 72, 73, 76, 79, 82, 83, 84, 87, 90, 91, 93, 96, 97, 103, 105, 113, 115, 117, 119, 121, 127, 131, 136, 137, 139, 148, 149, 151, 153, 157, 159, 163, 164
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {200}]; Do[ a = f[n]; If[a < 200, t[[a]]++ ], {n, 200}]; Select[ Range[ 200], t[[ # ]] == 0 &] (* Robert G. Wilson v, Jul 16 2004 *)

A096972 Number of preimages of n (or immediate predecessors) under map f(k) = k + (product of nonzero digits of k).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 3, 0, 2, 0
Offset: 1

Views

Author

Robert G. Wilson v, Jul 16 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[ n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {111}]; Do[ t[[f [n]]]++, {n, 111}]; Table[ t[[n]], {n, 105}]

A095992 a(1) = 30; for n > 1, a(n+1) = a(n) + {product of nonzero digits of a(n)}.

Original entry on oeis.org

30, 33, 42, 50, 55, 80, 88, 152, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362, 4506, 4626, 4914, 5058, 5258, 5658
Offset: 1

Views

Author

Julien Piquet (julipiquet(AT)yahoo.fr), Jul 18 2004

Keywords

References

  • From a puzzle; explanation found by Pierre Roger.

Crossrefs

Programs

  • Mathematica
    a[1] = 30; a[n_] := a[n] = Block[{s = Sort[ IntegerDigits[a[n - 1]]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; a[n - 1] + Times @@ s]; Table[ a[n], {n, 50}]
    nxt[n_] := n+Times@@Select[IntegerDigits[n], #>0&]; NestList[nxt,30,50] (* Harvey P. Dale, Jan 08 2011 *)

Extensions

The proposer suggests that this web site may contain other sequences also.
Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 20 2004
Showing 1-7 of 7 results.