A096940 Pascal (1,5) triangle.
5, 1, 5, 1, 6, 5, 1, 7, 11, 5, 1, 8, 18, 16, 5, 1, 9, 26, 34, 21, 5, 1, 10, 35, 60, 55, 26, 5, 1, 11, 45, 95, 115, 81, 31, 5, 1, 12, 56, 140, 210, 196, 112, 36, 5, 1, 13, 68, 196, 350, 406, 308, 148, 41, 5, 1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5, 1, 15, 95, 345, 810, 1302
Offset: 0
Examples
Triangle begins: 5; 1, 5; 1, 6, 5; 1, 7, 11, 5; 1, 8, 18, 16, 5; 1, 9, 26, 34, 21, 5; 1, 10, 35, 60, 55, 26, 5; 1, 11, 45, 95, 115, 81, 31, 5; 1, 12, 56, 140, 210, 196, 112, 36, 5; 1, 13, 68, 196, 350, 406, 308, 148, 41, 5; 1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5; etc.
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999
- Wolfdieter Lang, First 10 rows.
Crossrefs
Programs
-
Maple
a(n,k):=piecewise(n=0,5,0
Mircea Merca, Apr 08 2012 -
PARI
a(n) = {if(n <= 1, return(5 - 4*(n==1))); my(m = (sqrtint(8*n + 1) - 1)\2, t = n - binomial(m + 1, 2)); (1+4*t/m)*binomial(m,t)} \\ David A. Corneth, Aug 28 2019
Formula
Recursion: a(n, m)=0 if m>n, a(0, 0)= 5; a(n, 0)=1 if n>=1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (5-4*x)/(1-x)^(m+1), m>=0.
a(n,k) = (1+4*k/n)*binomial(n,k), for n>0. - Mircea Merca, Apr 08 2012
Comments