cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A096941 Fourth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 16, 34, 60, 95, 140, 196, 264, 345, 440, 550, 676, 819, 980, 1160, 1360, 1581, 1824, 2090, 2380, 2695, 3036, 3404, 3800, 4225, 4680, 5166, 5684, 6235, 6820, 7440, 8096, 8789, 9520, 10290, 11100, 11951, 12844, 13780, 14760, 15785, 16856, 17974, 19140
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=7, a(n-7) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Third column: A056000; fifth column: A096942.

Programs

Formula

a(n)= (n+15)*(n+2)*(n+1)/6 = 5*b(n)-4*b(n-1), with b(n):=A000292(n)=binomial(n+3, 3).
G.f.: (5-4*x)/(1-x)^4.

A096942 Fifth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 21, 55, 115, 210, 350, 546, 810, 1155, 1595, 2145, 2821, 3640, 4620, 5780, 7140, 8721, 10545, 12635, 15015, 17710, 20746, 24150, 27950, 32175, 36855, 42021, 47705, 53940, 60760, 68200, 76296, 85085, 94605, 104895, 115995, 127946, 140790, 154570, 169330, 185115
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=8, a(n-8) is the number of 4-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Fourth column: A096941; sixth column: A096943.

Programs

  • Magma
    [(n + 20)*Binomial(n + 3, 3) div 4: n in [0..50]]; // Vincenzo Librandi, Oct 01 2013
  • Mathematica
    Table[(n + 20) Binomial[n + 3, 3]/4, {n, 0, 100}]
    CoefficientList[Series[(5 - 4 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 01 2013 *)

Formula

a(n) = (n+20)*binomial(n+3, 3)/4 = 5*b(n) - 4*b(n-1), with b(n) = A000332(n+4) = binomial(n+4, 4).
G.f.: (5-4*x)/(1-x)^5.
a(n) = Sum_{k=1..n} (Sum_{i=1..k} i*(n-k+5)). - Wesley Ivan Hurt, Sep 26 2013

A096943 Sixth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 26, 81, 196, 406, 756, 1302, 2112, 3267, 4862, 7007, 9828, 13468, 18088, 23868, 31008, 39729, 50274, 62909, 77924, 95634, 116380, 140530, 168480, 200655, 237510, 279531, 327236, 381176, 441936, 510136, 586432, 671517, 766122, 871017, 987012
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=9, a(n-9) is the number of 5-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Fifth column: A096942; seventh column: A096944.

Programs

  • Mathematica
    CoefficientList[Series[(5-4x)/(1-x)^6,{x,0,40}],x] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{5,26,81,196,406,756},40] (* Harvey P. Dale, Jan 11 2014 *)

Formula

G.f.: (5-4*x)/(1-x)^6.
a(n)= (n+25)*binomial(n+4, 4)/5 = 5*b(n)-4*b(n-1), with b(n):= A000389(n+5)=binomial(n+5, 5).
a(0)=5, a(1)=26, a(2)=81, a(3)=196, a(4)=406, a(5)=756, a(n)=6*a(n-1)- 15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Jan 11 2014

A096944 Seventh column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 31, 112, 308, 714, 1470, 2772, 4884, 8151, 13013, 20020, 29848, 43316, 61404, 85272, 116280, 156009, 206283, 269192, 347116, 442750, 559130, 699660, 868140, 1068795, 1306305, 1585836, 1913072, 2294248, 2736184, 3246320, 3832752
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=10, a(n-10) is the number of 6-subsets of X having at most one element in common with Y. > - Milan Janjic, Dec 08 2007

Crossrefs

Sixth column: A096943; eighth column: A096945.

Formula

G.f.: (5-4*x)/(1-x)^7.
a(n)= (n+30)*binomial(n+5, 5)/6 = 5*b(n)-4*b(n-1), with b(n):=A000579(n+6)=binomial(n+6, 6).

A096945 Eighth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 36, 148, 456, 1170, 2640, 5412, 10296, 18447, 31460, 51480, 81328, 124644, 186048, 271320, 387600, 543609, 749892, 1019084, 1366200, 1808950, 2368080, 3067740, 3935880, 5004675, 6310980, 7896816, 9809888, 12104136, 14840320
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=11, a(n-11) is the number of 7-subsets of X having at most one element in common with Y. > - Milan Janjic, Dec 08 2007

Crossrefs

Seventh column: A096944; ninth column: A096946.

Programs

  • Mathematica
    CoefficientList[Series[(5-4*x)/(1-x)^8,{x,0,30}],x] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{5,36,148,456,1170,2640,5412,10296},30] (* Harvey P. Dale, Aug 16 2014 *)

Formula

G.f.: (5-4*x)/(1-x)^8.
a(n)= (n+35)*binomial(n+6, 6)/7 = 5*b(n)-4*b(n-1), with b(n):=A000580(n+7)=binomial(n+7, 7).
a(0)=5, a(1)=36, a(2)=148, a(3)=456, a(4)=1170, a(5)=2640, a(6)=5412, a(7)=10296, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8). - Harvey P. Dale, Aug 16 2014

A096946 Ninth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 41, 189, 645, 1815, 4455, 9867, 20163, 38610, 70070, 121550, 202878, 327522, 513570, 784890, 1172490, 1716099, 2465991, 3485075, 4851275, 6660225, 9028305, 12096045, 16031925, 21036600, 27347580, 35244396, 45054284, 57158420
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=12, a(n-12) is the number of 8-subsets of X having at most one element in common with Y. > - Milan Janjic, Dec 08 2007

Crossrefs

Eighth column: A096945; tenth column: A096947.

Formula

a(n)= (n+40)*binomial(n+7, 7)/8 = 5*b(n)-4*b(n-1), with b(n):=A000581(n+8)=binomial(n+8, 8).
G.f.: (5-4*x)/(1-x)^9.

A096947 Tenth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 46, 235, 880, 2695, 7150, 17017, 37180, 75790, 145860, 267410, 470288, 797810, 1311380, 2096270, 3268760, 4984859, 7450850, 10935925, 15787200, 22447425, 31475730, 43571775, 59603700, 80640300, 107987880, 143232276, 188286560
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=13, a(n-13) is the number of 9-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Ninth column: A096946.

Programs

  • Mathematica
    CoefficientList[Series[(5-4x)/(1-x)^10,{x,0,40}],x] (* Harvey P. Dale, Jan 06 2020 *)

Formula

a(n) = (n+45)*binomial(n+8, 8)/9.
a(n) = 5*b(n)-4*b(n-1), with b(n) = A000582(n+9) = binomial(n+9, 9).
G.f.: (5-4*x)/(1-x)^10.

A007283 a(n) = 3*2^n.

Original entry on oeis.org

3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024

References

  • Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
  • Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.

Programs

Formula

G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020

A228196 A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.

Original entry on oeis.org

0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1

Views

Author

Boris Putievskiy, Aug 15 2013

Keywords

Comments

The third row is (n^4 - n^2 + 24*n + 24)/12.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013

Examples

			The start of the sequence as a triangular array read by rows:
   0;
   1,  2;
   4,  3,  4;
   9,  7,  7,  8;
  16, 16, 14, 15, 16;
  25, 32, 30, 29, 31, 32;
  36, 57, 62, 59, 60, 63, 64;
		

Crossrefs

Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)). A007318 (1,1), A008949 (1,2^n), A029600 (2,3), A029618 (3,2), A029635 (1,2), A029653 (2,1), A037027 (Fibonacci(n),1), A051601 (n,n) n>=0, A051597 (n,n) n>0, A051666 (n^2,n^2), A071919 (1,0), A074829 (Fibonacci(n), Fibonacci(n)), A074909 (1,n), A093560 (3,1), A093561 (4,1), A093562 (5,1), A093563 (6,1), A093564 (7,1), A093565 (8,1), A093644 (9,1), A093645 (10,1), A095660 (1,3), A095666 (1,4), A096940 (1,5), A096956 (1,6), A106516 (3^n,1), A108561(1,(-1)^n), A132200 (4,4), A134636 (2n+1,2n+1), A137688 (2^n,2^n), A160760 (3^(n-1),1), A164844(1,10^n), A164847 (100^n,1), A164855 (101*100^n,1), A164866 (101^n,1), A172171 (1,9), A172185 (9,11), A172283 (-9,11), A177954 (int(n/2),1), A193820 (1,2^n), A214292 (n,-n), A227074 (4^n,4^n), A227075 (3^n,3^n), A227076 (5^n,5^n), A227550 (n!,n!), A228053 ((-1)^n,(-1)^n), A228074 (Fibonacci(n), n).
Cf. A000290 (row 1), A153056 (row 2), A000079 (column 1), A000225 (column 2), A132753 (column 3), A118885 (row sums of triangle array + 1), A228576 (generalized Pascal's triangle).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return n^2;
        elif k=n then return 2^n;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then n^2
        elif k=n then 2^k
        else T(n-1, k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
    Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
  • PARI
    T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
    
  • Python
    def funcL(n):
       q = n**2
       return q
    def funcR(n):
       q = 2**n
       return q
    for n in range (1,9871):
       t=int((math.sqrt(8*n-7) - 1)/ 2)
       i=n-t*(t+1)/2-1
       j=(t*t+3*t+4)/2-n-1
       sum1=0
       sum2=0
       for m1 in range (1,i+1):
          sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
       for m2 in range (1,j+1):
          sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
       sum=sum1+sum2
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n^2
        elif (k==n): return 2^n
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(n,0) = n^2, n>0; T(0,k) = 2^k; T(n, k) = T(n-1, k-1) + T(n-1, k) for n,k > 0. [corrected by G. C. Greubel, Nov 12 2019]
Closed-form formula for general case. Let L(m) and R(m) be the left border and the right border of Pascal like triangle, respectively. We denote binomial(n,k) by C(n,k).
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} R(m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} L(m2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} R(m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} L(m2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.
Some special cases. If L(m)={b,b,b...} b*A000012, then the second sum takes form b*C(n+k-1,j). If L(m) is {0,b,2b,...} b*A001477, then the second sum takes form b*C(n+k,n-1). Similarly for R(m) and the first sum.
For this sequence L(m)=m^2 and R(m)=2^m.
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} (2^m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} (m2^2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} (2^m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} (m2^2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2).
As a triangular array read by rows, T(n,k) = Sum_{i=1..n-k} i^2*C(n-1-i, n-k-i) + Sum_{i=1..k} 2^i*C(n-1-i, k-i); n,k >=0. - Greg Dresden, Aug 06 2022

Extensions

Cross-references corrected and extended by Philippe Deléham, Dec 27 2013

A056000 a(n) = n*(n+9)/2.

Original entry on oeis.org

0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475
Offset: 0

Views

Author

Barry E. Williams, Jun 16 2000

Keywords

Comments

Numbers m >= 0 such that 8m+81 is a square. - Bruce J. Nicholson, Jul 29 2017

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

Column m=2 of (1, 5)-Pascal triangle A096940.
Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.

Programs

  • Mathematica
    Table[n (n + 9)/2, {n, 0, 50}] (* or *)
    FoldList[#1 + #2 + 4 &, Range[0, 50]] (* or *)
    Table[PolygonalNumber[n + 4] - 10, {n, 0, 50}] (* or *)
    CoefficientList[Series[x (5 - 4 x)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    a(n)=n*(n+9)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = A000217(n+4) - 10.
G.f.: x(5-4x)/(1-x)^3.
From Zerinvary Lajos, Oct 01 2006: (Start)
a(n) = A000096(n) + 3*n.
a(n) = A055999(n) + n.
a(n) = A056115(n) - n.
(End)
a(n) = binomial(n,2) - 4*n, n >= 9. - Zerinvary Lajos, Nov 25 2006
a(n) = A126890(n,4) for n > 3. - Reinhard Zumkeller, Dec 30 2006
a(n) = A028569(n)/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..(n-i)} binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,5), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 4. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+4). - Gary Detlefs, Aug 10 2010
Sum_{n>=1} 1/a(n) = 7129/11340. - R. J. Mathar, Jul 14 2012
a(n) = 5n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: (1/2)*(x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 1879/11340. - Amiram Eldar, Jul 03 2020
a(n) = A000217(n+1) + A008585(n) - 1. - Leo Tavares, Sep 22 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -567*cos(sqrt(89)*Pi/2)/(220*Pi).
Product_{n>=1} (1 + 1/a(n)) = 35*cos(sqrt(73)*Pi/2)/(4*Pi). (End)

Extensions

More terms from James Sellers, Jul 04 2000
Showing 1-10 of 14 results. Next