cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A096940 Pascal (1,5) triangle.

Original entry on oeis.org

5, 1, 5, 1, 6, 5, 1, 7, 11, 5, 1, 8, 18, 16, 5, 1, 9, 26, 34, 21, 5, 1, 10, 35, 60, 55, 26, 5, 1, 11, 45, 95, 115, 81, 31, 5, 1, 12, 56, 140, 210, 196, 112, 36, 5, 1, 13, 68, 196, 350, 406, 308, 148, 41, 5, 1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5, 1, 15, 95, 345, 810, 1302
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

This is the fifth member, q=5, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1)), A029635 (q=2) (but with a(0,0)=2, not 1), A095660 (q=3), A095666 (q=4), A096956 (q=6).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column no. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is G(z,x)=g(z)/(1-x*z*f(z)). Here: g(x)=(5-4*x)/(1-x), f(x)=1/(1-x), hence G(z,x)=(5-4*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} a(n-1-k, k) = A022096(n-2), n>=2, with n=1 value 5. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Examples

			Triangle begins:
  5;
  1,  5;
  1,  6,  5;
  1,  7, 11,   5;
  1,  8, 18,  16,   5;
  1,  9, 26,  34,  21,   5;
  1, 10, 35,  60,  55,  26,   5;
  1, 11, 45,  95, 115,  81,  31,   5;
  1, 12, 56, 140, 210, 196, 112,  36,   5;
  1, 13, 68, 196, 350, 406, 308, 148,  41,  5;
  1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5; etc.
		

Crossrefs

Row sums: A007283(n-1), n>=1, 5 if n=0; g.f.: (5-4*x)/(1-2*x). Alternating row sums are [5, -4, followed by 0's].
Column sequences (without leading zeros) give for m=1..9, with n>=0: A000027(n+5), A056000(n-1), A096941-7.

Programs

  • Maple
    a(n,k):=piecewise(n=0,5,0Mircea Merca, Apr 08 2012
  • PARI
    a(n) = {if(n <= 1, return(5 - 4*(n==1))); my(m = (sqrtint(8*n + 1) - 1)\2, t = n - binomial(m + 1, 2)); (1+4*t/m)*binomial(m,t)} \\ David A. Corneth, Aug 28 2019

Formula

Recursion: a(n, m)=0 if m>n, a(0, 0)= 5; a(n, 0)=1 if n>=1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (5-4*x)/(1-x)^(m+1), m>=0.
a(n,k) = (1+4*k/n)*binomial(n,k), for n>0. - Mircea Merca, Apr 08 2012

A096942 Fifth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 21, 55, 115, 210, 350, 546, 810, 1155, 1595, 2145, 2821, 3640, 4620, 5780, 7140, 8721, 10545, 12635, 15015, 17710, 20746, 24150, 27950, 32175, 36855, 42021, 47705, 53940, 60760, 68200, 76296, 85085, 94605, 104895, 115995, 127946, 140790, 154570, 169330, 185115
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=8, a(n-8) is the number of 4-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Fourth column: A096941; sixth column: A096943.

Programs

  • Magma
    [(n + 20)*Binomial(n + 3, 3) div 4: n in [0..50]]; // Vincenzo Librandi, Oct 01 2013
  • Mathematica
    Table[(n + 20) Binomial[n + 3, 3]/4, {n, 0, 100}]
    CoefficientList[Series[(5 - 4 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 01 2013 *)

Formula

a(n) = (n+20)*binomial(n+3, 3)/4 = 5*b(n) - 4*b(n-1), with b(n) = A000332(n+4) = binomial(n+4, 4).
G.f.: (5-4*x)/(1-x)^5.
a(n) = Sum_{k=1..n} (Sum_{i=1..k} i*(n-k+5)). - Wesley Ivan Hurt, Sep 26 2013

A185733 Second accumulation array of the polygonal number array (A086270), by antidiagonals.

Original entry on oeis.org

1, 5, 3, 15, 16, 6, 35, 50, 34, 10, 70, 120, 110, 60, 15, 126, 245, 270, 200, 95, 21, 210, 448, 560, 500, 325, 140, 28, 330, 756, 1036, 1050, 825, 490, 196, 36, 495, 1200, 1764, 1960, 1750, 1260, 700, 264, 45, 715, 1815, 2820, 3360, 3290, 2695, 1820, 960, 345, 55, 1001, 2640, 4290, 5400, 5670, 5096, 3920, 2520, 1275, 440, 66, 1365, 3718, 6270, 8250, 9150, 8820, 7448, 5460, 3375, 1650, 550, 78
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

This is the accumulation array of the accumulation array of A086270. The accumulation array of A185733 is A185734, so that A184733 is the weight array of A185734. Thus, the arrays are members of a two-way infinite chain; see A144112 for definitions.

Examples

			Northwest corner:
1....5....15....35....70
3....16...50....120...245
6....34...110...270...560
10...60...200...500..1050
		

Crossrefs

Rows 1 to 2: A000332, A004320.
Columns 1 to 3: A000219, A096941, 5*A007603.

Programs

  • Mathematica
    f[n_,k_]:=k*(1+k)*(2+k)*n*(1+n)*(10+2*k-n+k*n)/144;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = k*(k+1)*(k+2)*n*(n+1)*(k*n-n+2*k+10)/144.
Showing 1-4 of 4 results.