A096951 Sum of odd powers of 2 and of 3 divided by 5.
1, 7, 55, 463, 4039, 35839, 320503, 2876335, 25854247, 232557151, 2092490071, 18830313487, 169464432775, 1525146340543, 13726182847159, 123535108753519, 1111813831298023, 10006315891747615, 90056808665990167, 810511140554958031, 7294599715238808391
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (13,-36).
Crossrefs
Programs
-
Magma
[(2^(2*n+1) + 3^(2*n+1))/5: n in [0..30]]; // Vincenzo Librandi, May 31 2011
-
Mathematica
LinearRecurrence[{13, -36},{1, 7},19] (* Ray Chandler, Jul 14 2017 *)
Formula
a(n) = (2^(2*n+1) + 3^(2*n+1))/5.
G.f.: (1-6*x)/((1-4*x)*(1-9*x)).
From Reinhard Zumkeller, Mar 07 2008: (Start)
a(n+1) = 4*a(n) + 3^(2*n+1), a(0) = 1.
a(n) = A138233(n)/5. (End)
From Elmo R. Oliveira, Aug 02 2025: (Start)
E.g.f.: exp(4*x)*(2 + 3*exp(5*x))/5.
a(n) = 13*a(n-1) - 36*a(n-2).
a(n) = A015441(2*n+1). (End)
Comments