cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096939 Number of sets of odd number of even lists, cf. A000262.

Original entry on oeis.org

0, 2, 6, 36, 260, 1950, 19362, 193256, 2326536, 29272410, 413257790, 6231230412, 101415565836, 1769925341366, 32734873484250, 646218442877520, 13404753632014352, 294656673023216946, 6775966692145553526
Offset: 1

Views

Author

Vladeta Jovovic, Aug 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))] Sinh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)

Formula

E.g.f.: exp(x/(1-x^2))*sinh(x^2/(1-x^2)).
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = A000262(n) - A096965(n). - Alois P. Heinz, Dec 01 2021

Extensions

More terms from Robert G. Wilson v, Aug 19 2004

A349776 Triangle read by rows: T(n,k) is the number of partitions of set [n] into a set of at most k lists, with 0 <= k <= n. Also called broken permutations.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 6, 12, 13, 0, 24, 60, 72, 73, 0, 120, 360, 480, 500, 501, 0, 720, 2520, 3720, 4020, 4050, 4051, 0, 5040, 20160, 32760, 36960, 37590, 37632, 37633, 0, 40320, 181440, 322560, 381360, 393120, 394296, 394352, 394353
Offset: 0

Views

Author

Ron L.J. van den Burg, Nov 29 2021

Keywords

Comments

List means an ordered subset.

Examples

			For n=3 the T(3, 2)=12 broken permutations are {(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)}, {(3, 2, 1)}, {(1, 2), (3)}, {(2, 1), (3)}, {(1, 3), (2)}, {(3, 1), (2)}, {(2, 3), (1)}, {(3, 2), (1)}.
If you add the set of 3 lists {(1), (2), (3)}, you get T(3, 3) = 13 = A000262(3).
Triangle begins:
  1;
  0,   1;
  0,   2,    3;
  0,   6,   12,   13;
  0,  24,   60,   72,   73;
  0, 120,  360,  480,  500,  501;
  0, 720, 2520, 3720, 4020, 4050, 4051;
  ...
		

References

  • Kenneth P. Bogart, Combinatorics Through Guided Discovery, Kenneth P. Bogart, 2004, 57-58.

Crossrefs

Columns k=0-2 give (for n>=k): A000007, A000142, A001710.
Partial sums of A271703 per row.
Main diagonal is A000262.
Row sums give A062147(n-1) for n>=1.
Cf. A096965.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0, 0,
          binomial(n-1, k-1)*n!/k! +T(n, k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 01 2021
  • Mathematica
    T[n_, k_] := Sum[Binomial[n-1, n-j] n!/j!, {j, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2023 *)
  • PARI
    Lah(n, k) = if (n==0, 1, binomial(n-1, k-1)*n!/k!); \\ A271703
    T(n, k) = sum(j=0, k, Lah(n, j)); \\ Michel Marcus, Nov 30 2021
    
  • SageMath
    def T(n, k):
        return sum(binomial(n, i)*falling_factorial(n-1, n-i) for i in (0..k))
    print([[T(n, k) for k in (0..n)] for n in (0..9)])  # Peter Luschny, Dec 01 2021

Formula

T(n, k) = Sum_{j=0..k} A271703(n, j) for n >= 0.
T(n, n) = A000262(n).
T(n, k) = Sum_{j=0..k} binomial(n-1, n-j)*n!/j!.
T(n, k) = A000262(n) - A271703(n, k + 1) * hypergeom([1, k - n + 1], [k + 1, k + 2], -1). - Peter Luschny, Nov 30 2021
|Sum_{k=0..n} (-1)^k * T(n,k)| = A096965(n). - Alois P. Heinz, Dec 01 2021
Showing 1-2 of 2 results.