cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097063 Expansion of (1-2*x+3*x^2)/((1+x)*(1-x)^3).

Original entry on oeis.org

1, 0, 3, 4, 9, 12, 19, 24, 33, 40, 51, 60, 73, 84, 99, 112, 129, 144, 163, 180, 201, 220, 243, 264, 289, 312, 339, 364, 393, 420, 451, 480, 513, 544, 579, 612, 649, 684, 723, 760, 801, 840, 883, 924, 969, 1012, 1059, 1104, 1153, 1200, 1251, 1300, 1353, 1404
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Partial sums of A097062. Pairwise sums are A002061. Binomial transform is essentially A007466.

Crossrefs

A diagonal of A326296.

Programs

Formula

G.f. : (1-2*x+3*x^2)/((1-x^2)(1-x)^2).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = Sum_{k=0..n} (k^2-k+1)*(-1)^(n-k).
a(2n) = A058331(n); a(2n+1) = A046092(n). - R. J. Mathar, Oct 27 2008
a(n) = binomial(n+1, 2) - ceiling((n+1)/2) + 2((n+1) mod 2). - Wesley Ivan Hurt, Mar 08 2014
a(n) = 2*floor(n/2) + ceiling((n-1)^2/2). - M. Ryan Julian Jr., Sep 10 2019
a(n) = A326296(n + 1, n) for n > 0. - Andrew Howroyd, Sep 23 2019