cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097066 Expansion of (1-2*x+2*x^2)/((1+x)*(1-x)^3).

Original entry on oeis.org

1, 0, 2, 2, 5, 6, 10, 12, 17, 20, 26, 30, 37, 42, 50, 56, 65, 72, 82, 90, 101, 110, 122, 132, 145, 156, 170, 182, 197, 210, 226, 240, 257, 272, 290, 306, 325, 342, 362, 380, 401, 420, 442, 462, 485, 506, 530, 552, 577, 600, 626, 650, 677, 702, 730, 756, 785, 812
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Partial sums of A097065. Pairwise sums are A000124, with extra leading 1.
Binomial transform is 1, 1, 3, 9, 26, ..., A072863 with extra leading 1.

Crossrefs

Programs

  • GAP
    List([0..70], n-> (2*n^2 +3 +5*(-1)^n)/8); # G. C. Greubel, Jun 30 2019
  • Magma
    [(2*n^2 +3 +5*(-1)^n)/8: n in [0..70]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    CoefficientList[Series[(1-2x+2x^2)/((1+x)(1-x)^3), {x, 0, 70}], x] (* or *) LinearRecurrence[{2, 0, -2, 1}, {1, 0, 2, 2}, 70] (* Harvey P. Dale, Apr 08 2014 *)
    Table[(2n^2 +3 +5(-1)^n)/8, {n,0,70}] (* Vincenzo Librandi, Apr 09 2014 *)
  • PARI
    vector(70, n, n--; (2*n^2 +3 +5*(-1)^n)/8) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [(2*n^2 +3 +5*(-1)^n)/8 for n in (0..70)] # G. C. Greubel, Jun 30 2019
    

Formula

G.f.: (1-2*x+2*x^2)/((1-x^2)*(1-x)^2).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = 5*(-1)^n/8 + (2*n^2+3)/8.
a(n) = A004652(n+1) - A004526(n+1) = ceiling(((n+1)/2)^2) - floor((n+1)/2). - Ridouane Oudra, Jun 22 2019
E.g.f.: ((4+x+x^2)*cosh(x) - (1-x-x^2)*sinh(x))/4. - G. C. Greubel, Jun 30 2019