cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097067 Expansion of g.f. (1-4*x+5*x^2)/(1-2*x)^2.

Original entry on oeis.org

1, 0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544, 68719476736
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Binomial transform of A097065. Binomial transform is (n-2)*2^(n-1)+2, or A048495 with an extra leading 1.

Crossrefs

Essentially the same as A001787.

Programs

  • Magma
    [(n-1)*2^(n-2)+5*0^n/4 : n in [0..30]]; // Vincenzo Librandi, Sep 25 2011
    
  • Maple
    a:=n->abs(floor(sum (2^(n-1),j=1..n))): seq(a(n),n=-1..28); # Zerinvary Lajos, Jun 27 2007
  • PARI
    Vec((1-4*x+5*x^2)/(1-2*x)^2 + O(x^50)) \\ Altug Alkan, Nov 13 2015

Formula

a(n) = (n-1)*2^(n-2) + 5*0^n/4.
a(n) = 4*a(n-1) - 4*a(n-2), n > 1.
a(n+1) = A001787(n).
E.g.f.: (5 - exp(2*x)*(1 - 2*x))/4. - Stefano Spezia, Jul 01 2023