cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097074 Expansion of (1-x+2*x^2)/((1-x)*(1-x-2*x^2)).

Original entry on oeis.org

1, 1, 5, 9, 21, 41, 85, 169, 341, 681, 1365, 2729, 5461, 10921, 21845, 43689, 87381, 174761, 349525, 699049, 1398101, 2796201, 5592405, 11184809, 22369621, 44739241, 89478485, 178956969, 357913941, 715827881, 1431655765, 2863311529
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Partial sums of A097073.
This is the sequence A(1,1;1,2;2) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. [Wolfdieter Lang, Oct 18 2010]

Crossrefs

Programs

  • Magma
    [(2^(n+2) +2*(-1)^n -3)/3: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    CoefficientList[Series[(1-x+2x^2)/((1-x)(1-x-2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2},{1,1,5},40] (* Harvey P. Dale, Apr 09 2018 *)
  • SageMath
    [(2^(n+2) +2*(-1)^n -3)/3 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 2*A001045(n+1) - 1.
a(n) = (2^(n+2) + 2*(-1)^n - 3)/3.
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=1, a(1)=1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), a(0)=1=a(1), a(2)=5. Observed by G. Detlefs. See the W. Lang link. (End)
a(n) = 3*a(n-1) - 2*a(n-2) + 4*(-1)^n. - Gary Detlefs, Dec 19 2010
a(n) = A000975(n+1) - A000975(n) + 2*A000975(n-1). - R. J. Mathar, Feb 27 2019
E.g.f.: (1/3)*(2*exp(-x) - 3*exp(x) + 4*exp(2*x)). - G. C. Greubel, Aug 18 2022

Extensions

Correction of the homogeneous recurrence and index link added by Wolfdieter Lang, Nov 16 2013